This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363723 #7 Jun 25 2023 08:11:28 %S A363723 0,1,2,2,3,2,4,2,5,3,5,2,10,2,7,7,12,2,18,2,24,16,13,2,60,15,18,37,60, %T A363723 2,129,2,104,80,35,104,352,2,49,168,501,2,556,2,489,763,92,2,1799,292, %U A363723 985,649,1296,2,2233,1681,3379,1204,225,2,10661 %N A363723 Number of integer partitions of n having a unique mode equal to the mean, i.e., partitions whose mean appears more times than each of the other parts. %C A363723 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363723 The a(n) partitions for n = 6, 8, 12, 14, 16 (A..G = 10..16): %e A363723 (6) (8) (C) (E) (G) %e A363723 (33) (44) (66) (77) (88) %e A363723 (222) (2222) (444) (2222222) (4444) %e A363723 (111111) (3221) (3333) (3222221) (5443) %e A363723 (11111111) (4332) (3322211) (6442) %e A363723 (5331) (4222211) (7441) %e A363723 (222222) (11111111111111) (22222222) %e A363723 (322221) (32222221) %e A363723 (422211) (33222211) %e A363723 (111111111111) (42222211) %e A363723 (52222111) %e A363723 (1111111111111111) %t A363723 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363723 Table[Length[Select[IntegerPartitions[n],{Mean[#]}==modes[#]&]],{n,30}] %Y A363723 Partitions containing their mean are counted by A237984, ranks A327473. %Y A363723 For median instead of mode we have A240219, ranks A359889. %Y A363723 Partitions missing their mean are counted by A327472, ranks A327476. %Y A363723 The case of non-constant partitions is A362562. %Y A363723 Including median also gives A363719, ranks A363727. %Y A363723 Allowing multiple modes gives A363724. %Y A363723 Requiring multiple modes gives A363731. %Y A363723 For median instead of mean we have A363740. %Y A363723 A000041 counts partitions, strict A000009. %Y A363723 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A363723 A359893 and A359901 count partitions by median. %Y A363723 A362608 counts partitions with a unique mode. %Y A363723 Cf. A325347, A326567/A326568, A363720, A363725, A363730. %K A363723 nonn %O A363723 0,3 %A A363723 _Gus Wiseman_, Jun 24 2023