This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363724 #8 Jun 25 2023 18:20:23 %S A363724 1,2,2,3,2,5,2,5,5,6,2,15,2,8,15,17,2,30,2,43,30,15,2,112,36,21,60, %T A363724 119,2,251,2,201,126,41,271,655,2,57,250,1060,2,1099,2,844,1508,107,2, %U A363724 3484,802,2068,900,2136,2,4558,3513,7071,1630,259,2,20260 %N A363724 Number of integer partitions of n whose mean is a mode, i.e., partitions whose mean appears at least as many times as each of the other parts. %C A363724 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363724 The a(n) partitions for n = 6, 10, 12: %e A363724 (6) (10) (12) %e A363724 (3,3) (5,5) (6,6) %e A363724 (2,2,2) (2,2,2,2,2) (4,4,4) %e A363724 (3,2,1) (3,2,2,2,1) (5,4,3) %e A363724 (1,1,1,1,1,1) (4,2,2,1,1) (6,4,2) %e A363724 (1,1,1,1,1,1,1,1,1,1) (7,4,1) %e A363724 (3,3,3,3) %e A363724 (4,3,3,2) %e A363724 (5,3,3,1) %e A363724 (6,3,2,1) %e A363724 (2,2,2,2,2,2) %e A363724 (3,2,2,2,2,1) %e A363724 (3,3,2,2,1,1) %e A363724 (4,2,2,2,1,1) %e A363724 (1,1,1,1,1,1,1,1,1,1,1,1) %t A363724 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363724 Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&]],{n,30}] %Y A363724 For parts instead of modes we have A237984, complement A327472. %Y A363724 The case of a unique mode is A363723, non-constant A362562. %Y A363724 The case of more than one mode is A363731. %Y A363724 A000041 counts partitions, strict A000009. %Y A363724 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A363724 A362608 counts partitions with a unique mode. %Y A363724 A363719 = all three averages equal, ranks A363727, non-constant A363728. %Y A363724 A363720 = all three averages different, ranks A363730, unique mode A363725. %Y A363724 Cf. A240219, A326567/A326568, A363726, A363740. %K A363724 nonn %O A363724 1,2 %A A363724 _Gus Wiseman_, Jun 24 2023