This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363725 #9 Jun 23 2023 23:29:30 %S A363725 0,0,0,0,0,0,0,1,1,3,3,8,8,17,19,28,39,59,68,106,123,165,220,301,361, %T A363725 477,605,745,929,1245,1456,1932,2328,2846,3590,4292,5111,6665,8040, %U A363725 9607,11532,14410,16699,20894,24287,28706,35745,42845,49548,59963,70985 %N A363725 Number of integer partitions of n with a different mean, median, and mode, assuming there is a unique mode. %C A363725 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %C A363725 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363725 The a(7) = 1 through a(13) = 17 partitions: %e A363725 (3211) (4211) (3321) (5311) (4322) (4431) (4432) %e A363725 (4311) (6211) (4421) (5322) (5422) %e A363725 (5211) (322111) (5411) (6411) (5521) %e A363725 (6311) (7311) (6322) %e A363725 (7211) (8211) (6511) %e A363725 (43211) (53211) (7411) %e A363725 (332111) (432111) (8311) %e A363725 (422111) (522111) (9211) %e A363725 (54211) %e A363725 (63211) %e A363725 (333211) %e A363725 (433111) %e A363725 (442111) %e A363725 (532111) %e A363725 (622111) %e A363725 (3322111) %e A363725 (32221111) %t A363725 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363725 Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&Mean[#]!=Median[#]!=First[modes[#]]&]],{n,0,30}] %Y A363725 The length-4 case appears to be A325695. %Y A363725 For equal instead of unequal we have A363719, ranks A363727. %Y A363725 Allowing multiple modes gives A363720, ranks A363730. %Y A363725 A000041 counts partitions, strict A000009. %Y A363725 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A363725 A359893 and A359901 count partitions by median, odd-length A359902. %Y A363725 A362608 counts partitions with a unique mode. %Y A363725 Cf. A237984, A240219, A325347, A326567/A326568, A327472, A359894, A359896, A359900, A363723, A363728. %K A363725 nonn %O A363725 0,10 %A A363725 _Gus Wiseman_, Jun 22 2023