A363726 Number of odd-length integer partitions of n with a unique mode.
0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 26, 39, 50, 67, 86, 118, 148, 196, 245, 315, 394, 507, 629, 792, 979, 1231, 1503, 1873, 2286, 2814, 3424, 4194, 5073, 6183, 7449, 9014, 10827, 13055, 15603, 18713, 22308, 26631, 31646, 37641, 44559, 52835, 62374, 73671
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 8 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (111) (211) (221) (222) (322) (332) (311) (411) (331) (422) (11111) (21111) (511) (611) (22111) (22211) (31111) (32111) (1111111) (41111) (2111111)
Crossrefs
The constant case is A001227.
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&OddQ[Length[#]]&]],{n,30}]
Comments