cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363726 Number of odd-length integer partitions of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 26, 39, 50, 67, 86, 118, 148, 196, 245, 315, 394, 507, 629, 792, 979, 1231, 1503, 1873, 2286, 2814, 3424, 4194, 5073, 6183, 7449, 9014, 10827, 13055, 15603, 18713, 22308, 26631, 31646, 37641, 44559, 52835, 62374, 73671
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)
            (111)  (211)  (221)    (222)    (322)      (332)
                          (311)    (411)    (331)      (422)
                          (11111)  (21111)  (511)      (611)
                                            (22111)    (22211)
                                            (31111)    (32111)
                                            (1111111)  (41111)
                                                       (2111111)
		

Crossrefs

The constant case is A001227.
Allowing multiple modes gives A027193, ranks A026424.
Allowing any length gives A362608, ranks A356862.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&OddQ[Length[#]]&]],{n,30}]