This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363727 #5 Jun 24 2023 07:56:17 %S A363727 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53,59, %T A363727 61,64,67,71,73,79,81,83,89,90,97,101,103,107,109,113,121,125,127,128, %U A363727 131,137,139,149,151,157,163,167,169,173,179,181,191,193,197,199 %N A363727 Numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode. %C A363727 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A363727 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363727 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %F A363727 Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)). %e A363727 The terms together with their prime indices begin: %e A363727 2: {1} 29: {10} 79: {22} %e A363727 3: {2} 31: {11} 81: {2,2,2,2} %e A363727 4: {1,1} 32: {1,1,1,1,1} 83: {23} %e A363727 5: {3} 37: {12} 89: {24} %e A363727 7: {4} 41: {13} 90: {1,2,2,3} %e A363727 8: {1,1,1} 43: {14} 97: {25} %e A363727 9: {2,2} 47: {15} 101: {26} %e A363727 11: {5} 49: {4,4} 103: {27} %e A363727 13: {6} 53: {16} 107: {28} %e A363727 16: {1,1,1,1} 59: {17} 109: {29} %e A363727 17: {7} 61: {18} 113: {30} %e A363727 19: {8} 64: {1,1,1,1,1,1} 121: {5,5} %e A363727 23: {9} 67: {19} 125: {3,3,3} %e A363727 25: {3,3} 71: {20} 127: {31} %e A363727 27: {2,2,2} 73: {21} 128: {1,1,1,1,1,1,1} %t A363727 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A363727 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363727 Select[Range[100],{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&] %Y A363727 These partitions are counted by A363719, factorizations A363741. %Y A363727 For unequal instead of equal we have A363730, counted by A363720. %Y A363727 Excluding primes gives A363722. %Y A363727 Excluding prime-powers gives A363729, counted by A363728. %Y A363727 A112798 lists prime indices, length A001222, sum A056239. %Y A363727 A326567/A326568 gives mean of prime indices. %Y A363727 A356862 ranks partitions with a unique mode, counted by A362608. %Y A363727 A359178 ranks partitions with multiple modes, counted by A362610. %Y A363727 A360005 gives twice the median of prime indices. %Y A363727 A362611 counts modes in prime indices, triangle A362614. %Y A363727 A362613 counts co-modes in prime indices, triangle A362615. %Y A363727 A363486 gives least mode in prime indices, A363487 greatest. %Y A363727 Just two statistics: %Y A363727 - (mean) = (median): A359889, counted by A240219. %Y A363727 - (mean) != (median): A359890, counted by A359894. %Y A363727 - (mean) = (mode): counted by A363723, see A363724, A363731. %Y A363727 - (median) = (mode): counted by A363740. %Y A363727 Cf. A215366, A327473, A327476, A359893, A359908, A360009, A360248, A360550, A363721, A363725. %K A363727 nonn %O A363727 1,1 %A A363727 _Gus Wiseman_, Jun 23 2023