This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363728 #9 Aug 16 2023 11:01:41 %S A363728 0,0,0,0,0,0,0,1,0,1,0,4,0,3,3,7,0,12,0,18,12,9,0,50,12,14,33,54,0, %T A363728 115,0,92,75,31,99,323,0,45,162,443,0,507,0,467,732,88,0,1551,274,833, %U A363728 627,1228,0,2035,1556,2859,1152,221,0,9008,0,295,4835,5358 %N A363728 Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode. %C A363728 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363728 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A363728 The a(8) = 1 through a(18) = 12 partitions: %e A363728 3221 . 32221 . 4332 . 3222221 43332 5443 . 433332 %e A363728 5331 3322211 53331 6442 443331 %e A363728 322221 4222211 63321 7441 533322 %e A363728 422211 32222221 533331 %e A363728 33222211 543321 %e A363728 42222211 633321 %e A363728 52222111 733311 %e A363728 322222221 %e A363728 332222211 %e A363728 422222211 %e A363728 432222111 %e A363728 522222111 %t A363728 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363728 Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}] %Y A363728 Non-constant partitions are counted by A144300, ranks A024619. %Y A363728 This is the non-constant case of A363719, ranks A363727. %Y A363728 These partitions have ranks A363729. %Y A363728 A000041 counts partitions, strict A000009. %Y A363728 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A363728 A359893 and A359901 count partitions by median, odd-length A359902. %Y A363728 A362608 counts partitions with a unique mode. %Y A363728 Cf. A237984, A240219, A325347, A326567/A326568, A327472, A359894, A363720, A363721. %K A363728 nonn %O A363728 1,12 %A A363728 _Gus Wiseman_, Jun 23 2023