A363729 Numbers that are not a power of a prime but whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
90, 270, 525, 550, 756, 810, 1666, 1911, 1950, 2268, 2430, 2625, 2695, 2700, 2750, 5566, 6762, 6804, 6897, 7128, 7290, 8100, 8500, 9310, 9750, 10285, 10478, 11011, 11550, 11662, 12250, 12375, 12495, 13125, 13377, 13750, 14014, 14703, 18865, 19435, 20412, 21384
Offset: 1
Keywords
Examples
The prime indices of 6897 are {2,5,5,8}, with mean 5, median 5, and modes {5}, so 6897 is in the sequence. The terms together with their prime indices begin: 90: {1,2,2,3} 270: {1,2,2,2,3} 525: {2,3,3,4} 550: {1,3,3,5} 756: {1,1,2,2,2,4} 810: {1,2,2,2,2,3} 1666: {1,4,4,7} 1911: {2,4,4,6} 1950: {1,2,3,3,6} 2268: {1,1,2,2,2,2,4} 2430: {1,2,2,2,2,2,3}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Select[Range[1000],!PrimePowerQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
Comments