A363733 Array read by upwards antidiagonals. The family of polynomials generated by the divisibility matrix (A113704) evaluated over the nonnegative integers.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 2, 22, 30, 20, 5, 1, 0, 4, 34, 93, 68, 30, 6, 1, 0, 2, 78, 246, 276, 130, 42, 7, 1, 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1, 0, 3, 278, 2190, 4180, 3130, 1338, 350, 72, 9, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 [1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ... A001477 [2] 0, 2, 6, 12, 20, 30, 42, 56, 72, ... A002378 [3] 0, 2, 10, 30, 68, 130, 222, 350, 520, ... A034262 [4] 0, 3, 22, 93, 276, 655, 1338, 2457, 4168, ... [5] 0, 2, 34, 246, 1028, 3130, 7782, 16814, 32776, ... A131471 [6] 0, 4, 78, 768, 4180, 15780, 46914, 118048, 262728, ... [7] 0, 2, 130, 2190, 16388, 78130, 279942, 823550, 2097160, ... A190578 [8] 0, 4, 278, 6654, 65812, 391280, 1680954, 5767258, 16781384, ... A000005,A055895,A363913, ... A066108 (diagonal) . Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 2, 2, 1; [4] 0, 2, 6, 3, 1; [5] 0, 3, 10, 12, 4, 1; [6] 0, 2, 22, 30, 20, 5, 1; [7] 0, 4, 34, 93, 68, 30, 6, 1; [8] 0, 2, 78, 246, 276, 130, 42, 7, 1; [9] 0, 4, 130, 768, 1028, 655, 222, 56, 8, 1;
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer 1976, p. 14.
Crossrefs
Programs
-
Maple
divides := (k, n) -> ifelse(k = n or (k > 0 and irem(n, k) = 0), 1, 0): A := (n, k) -> local j; add(divides(j, n) * k^j, j = 0 ..n): for n from 0 to 8 do seq(A(n, k), k = 0..8) od; # If we introduce the 'inverse Möbius transform' InvMoebius acting on s ... InvMoebius := (s, n) -> local j; add(divides(j, n) * s(j), j = 0 ..n): # ... the transposed array is given by applying InvMoebius to the powers r^m: seq(lprint(seq(InvMoebius(m -> r^m, n), n = 0..8)), r = 0..8); # For instance we see that the number of divisors is the inverse # Moebius transform of the constant sequence s = 1.
-
SageMath
def A(n, k): return sum(j.divides(n) * k^j for j in (0..n)) for n in srange(9): print([A(n, k) for k in (0..8)])
Formula
A(n, k) = Sum_{j=0..n} divides(j, n) * k^j, where divides(k, n) <-> [k = n or (k > 0 and n mod k = 0)], and '[ ]' denotes the Iverson bracket.
The columns are the inverse Möbius transforms of the powers x^n, x >= 0.
Comments