This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363734 #26 Sep 20 2024 14:41:50 %S A363734 0,2,5,8,14,14,27,20,37,34,47,32,79,38,67,72,92,50,121,56,135,102,107, %T A363734 68,209,98,127,132,191,86,263,92,219,162,167,172,352,110,187,192,353, %U A363734 122,371,128,303,310,227,140,519,194,345,252,359,158,479,272,497 %N A363734 a(n) = Sum_{k=0..n} n^divides(k, n), where divides(k, n) = 1 if k divides n, otherwise 0. %H A363734 Peter Luschny, <a href="/A363734/b363734.txt">Table of n, a(n) for n = 0..10000</a> %F A363734 a(n) = (n - 1) * tau(n) + n + 1 for n >= 1, where tau = A000005. %F A363734 a(n) + A363735(n) = (n + 1)^2. %F A363734 A363735(n) - a(n) = A363421(n). %t A363734 A363734[n_]:=If[n==0,0,n+1+(n-1)DivisorSigma[0,n]];Array[A363734,100,0] (* _Paolo Xausa_, Aug 06 2023 *) %o A363734 (SageMath) %o A363734 print([sum(n^k.divides(n) for k in srange(n+1)) for n in srange(57)]) %o A363734 (Python) %o A363734 from sympy import divisor_count %o A363734 def A363734(n): return (n-1)*divisor_count(n)+n+1 if n else 0 # _Chai Wah Wu_, Jun 28 2023 %Y A363734 Cf. A113704, A000005, A363735, A363421. %K A363734 nonn %O A363734 0,2 %A A363734 _Peter Luschny_, Jun 27 2023