This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363740 #7 Jun 27 2023 10:28:55 %S A363740 1,2,2,4,5,7,10,15,18,26,35,46,61,82,102,136,174,224,283,360,449,569, %T A363740 708,883,1089,1352,1659,2042,2492,3039,3695,4492,5426,6555,7889,9482, %U A363740 11360,13602,16231,19348,23005,27313,32364,38303,45227,53341,62800,73829 %N A363740 Number of integer partitions of n whose median appears more times than any other part, i.e., partitions containing a unique mode equal to the median. %C A363740 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %C A363740 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %e A363740 The a(1) = 1 through a(8) = 15 partitions: %e A363740 (1) (2) (3) (4) (5) (6) (7) (8) %e A363740 (11) (111) (22) (221) (33) (322) (44) %e A363740 (211) (311) (222) (331) (332) %e A363740 (1111) (2111) (411) (511) (422) %e A363740 (11111) (3111) (2221) (611) %e A363740 (21111) (4111) (2222) %e A363740 (111111) (22111) (3221) %e A363740 (31111) (5111) %e A363740 (211111) (22211) %e A363740 (1111111) (32111) %e A363740 (41111) %e A363740 (221111) %e A363740 (311111) %e A363740 (2111111) %e A363740 (11111111) %t A363740 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363740 Table[Length[Select[IntegerPartitions[n],{Median[#]}==modes[#]&]],{n,30}] %Y A363740 For mean instead of mode we have A240219, see A359894, A359889, A359895, A359897, A359899. %Y A363740 Including mean also gives A363719, ranks A363727. %Y A363740 For mean instead of median we have A363723, see A363724, A363731. %Y A363740 A000041 counts integer partitions, strict A000009. %Y A363740 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A363740 A359893 and A359901 count partitions by median. %Y A363740 A362608 counts partitions with a unique mode, ranks A356862. %Y A363740 Cf. A027193, A237984, A325347, A362562, A363720, A363725, A363726. %K A363740 nonn %O A363740 1,2 %A A363740 _Gus Wiseman_, Jun 26 2023