This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363741 #14 Aug 16 2023 11:05:38 %S A363741 0,1,1,2,1,1,1,2,2,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1, %T A363741 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1, %U A363741 1,1,1,2,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1 %N A363741 Number of factorizations of n satisfying (mean) = (median) = (mode), assuming there is a unique mode. %C A363741 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363741 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %C A363741 Position of first appearance of n is: (1, 2, 4, 16, 64, 5832, 4096, ...). %e A363741 The factorization 6*9*9*12 = 5832 has mean 9, median 9, and modes {9}, so it is counted under a(5832). %e A363741 The a(n) factorizations for selected n: %e A363741 2 4 16 64 5832 4096 %e A363741 2*2 4*4 8*8 18*18*18 64*64 %e A363741 2*2*2*2 4*4*4 6*9*9*12 8*8*8*8 %e A363741 2*2*2*2*2*2 3*6*6*6*9 16*16*16 %e A363741 2*3*3*3*3*3*3*4 4*4*4*4*4*4 %e A363741 2*2*2*2*2*2*2*2*2*2*2*2 %t A363741 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A363741 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363741 Table[Length[Select[facs[n],{Mean[#]}=={Median[#]}==modes[#]&]],{n,100}] %Y A363741 For just (mean) = (median): A359909, see A240219, A359889, A359910, A359911. %Y A363741 The version for partitions is A363719, unequal A363720. %Y A363741 For unequal instead of equal we have A363742. %Y A363741 A000041 counts integer partitions. %Y A363741 A001055 counts factorizations, strict A045778, ordered A074206. %Y A363741 A089723 counts constant factorizations. %Y A363741 A316439 counts factorizations by length, A008284 partitions. %Y A363741 A326622 counts factorizations with integer mean, strict A328966. %Y A363741 A339846 counts even-length factorizations, A339890 odd-length. %Y A363741 Cf. A237984, A326567/A326568, A327472, A359893, A363723, A363727, A363740. %K A363741 nonn %O A363741 1,4 %A A363741 _Gus Wiseman_, Jun 26 2023