This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363742 #13 Jan 29 2025 17:30:30 %S A363742 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, %T A363742 0,1,0,0,0,1,0,1,0,0,0,0,0,2,0,0,0,0,0,1,0,1,0,0,0,3,0,0,0,1,0,1,0,0, %U A363742 0,1,0,4,0,0,0,0,0,1,0,2,0,0,0,4,0,0,0,1,0,3,0,0,0,0,0,7,0,0,0,1,0,1,0,1,0,0,0,4,0,1,0,3,0,1,0,0,0,0,0,7 %N A363742 Number of integer factorizations of n with different mean, median, and mode. %C A363742 An integer factorization of n is a multiset of positive integers > 1 with product n. %C A363742 If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode. %C A363742 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363742 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %C A363742 Position of first appearance of n is: 1, 30, 48, 60, 72, 200, 160, 96, ... %H A363742 Antti Karttunen, <a href="/A363742/b363742.txt">Table of n, a(n) for n = 1..65537</a> %e A363742 The a(n) factorizations for n = 30, 48, 60, 72, 96, 144: %e A363742 (2*3*5) (2*3*8) (2*5*6) (2*4*9) (2*6*8) (2*8*9) %e A363742 (2*2*3*4) (2*3*10) (3*4*6) (3*4*8) (3*6*8) %e A363742 (2*2*3*5) (2*3*12) (2*3*16) (2*3*24) %e A363742 (2*2*3*6) (2*4*12) (2*4*18) %e A363742 (2*2*3*8) (2*6*12) %e A363742 (2*2*4*6) (3*4*12) %e A363742 (2*3*4*4) (2*2*4*9) %e A363742 (2*3*4*6) %e A363742 (2*2*3*12) %e A363742 (2*2*3*3*4) %t A363742 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A363742 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363742 Table[Length[Select[facs[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,100}] %o A363742 (PARI) %o A363742 median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2); %o A363742 uniqmode(lista) = { my(freqs=Map(),v); for(i=1,#lista,if(!mapisdefined(freqs,lista[i],&v), v = 0); mapput(freqs,lista[i],1+v)); my(keys=Vec(freqs), fr, mc=0, mf=0, isuniq=0); for(i=1,#keys, fr = mapget(freqs,keys[i]); if(fr>=mf, isuniq = (fr>mf); mf = fr; mc = keys[i])); if(!isuniq, -1, mc); }; \\ Returns -1 if not unique mode. %o A363742 all_different(facs) = { my(mean=(vecsum(facs)/#facs), med=median(facs), mode=uniqmode(facs)); ((mean!=med) && (mean!=mode) && (med!=mode)); }; %o A363742 A363742(n, m=n, facs=List([])) = if(1==n, (#facs>0 && all_different(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A363742(n/d, d, newfacs))); (s)); \\ _Antti Karttunen_, Jan 29 2025 %Y A363742 Just (mean) != (median): A359911, complement A359909, partitions A359894. %Y A363742 The version for partitions is A363720, equal A363719, ranks A363730. %Y A363742 For equal instead of unequal we have A363741. %Y A363742 A001055 counts factorizations, strict A045778, ordered A074206. %Y A363742 A316439 counts factorizations by length, A008284 partitions. %Y A363742 A363265 counts factorizations with a unique mode. %Y A363742 Cf. A089723, A237984, A240219, A326622, A339846, A339890, A359910, A362608, A363725, A363727. %K A363742 nonn %O A363742 1,48 %A A363742 _Gus Wiseman_, Jun 27 2023 %E A363742 More terms from _Antti Karttunen_, Jan 29 2025