cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363748 Number of compositions into sums of fourth powers.

This page as a plain text file.
%I A363748 #21 Jun 21 2023 08:56:03
%S A363748 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
%T A363748 17,19,22,26,31,37,44,52,61,71,82,94,107,121,136,152,169,188,210,236,
%U A363748 267,304,348,400,461,532,614,708,815,936,1072,1224,1393,1581,1791,2027,2294,2598,2946,3346,3807,4339,4953,5661,6476,7412,8484,9708,11101,12682,14474
%N A363748 Number of compositions into sums of fourth powers.
%C A363748 This sequence is different from A291149.
%H A363748 Seiichi Manyama, <a href="/A363748/b363748.txt">Table of n, a(n) for n = 0..10000</a>
%F A363748 G.f.: 1/(1 - Sum_{k>=1} x^(k^4)).
%e A363748 a(18)=4 counts the compositions 1^4+1^4+1^4+2^4 = 1^4+1^4+2^4+1^4 = 1^4+2^4+1^4+1^4 = 2^4+1^4+1^4+1^4. - _R. J. Mathar_, Jun 21 2023
%o A363748 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ispower(j, 4)*v[i-j+1])); v;
%Y A363748 Cf. A006456, A023358, A363749.
%Y A363748 Cf. A000583, A291149, A352529.
%K A363748 nonn
%O A363748 0,17
%A A363748 _Seiichi Manyama_, Jun 19 2023