cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363752 Primes prime(k) such that prime(k) mod k is prime.

This page as a plain text file.
%I A363752 #28 Sep 06 2024 11:47:45
%S A363752 5,7,17,19,23,41,47,53,61,71,79,89,101,107,113,127,131,137,139,151,
%T A363752 163,167,173,181,191,193,197,211,223,227,229,233,239,241,257,269,277,
%U A363752 281,313,317,347,359,367,373,383,397,421,433,443,457,463,479,503,521,541
%N A363752 Primes prime(k) such that prime(k) mod k is prime.
%H A363752 Amiram Eldar, <a href="/A363752/b363752.txt">Table of n, a(n) for n = 1..10000</a>
%F A363752 a(n) = A000040(A363751(n)).
%e A363752 The 9th prime is 23 and 23 mod 9 = 5, which is prime, so 23 is a term.
%t A363752 Table[If[PrimeQ[Mod[Prime[k], k]], Prime[k], Nothing], {k, 1, 100}]
%o A363752 (Python)
%o A363752 from sympy import prime, isprime
%o A363752 a363752=[]
%o A363752 for k in range(1, 101):
%o A363752     if isprime(prime(k)%k):
%o A363752         a363752.append(prime(k))
%Y A363752 Cf. A000040, A004648, A363751.
%K A363752 nonn
%O A363752 1,1
%A A363752 _Nicholas Leonard_, Jun 19 2023