cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363760 Cycle lengths obtained by repeated application of Klaus Nagel's strip bijection, as described in A307110.

This page as a plain text file.
%I A363760 #39 Dec 14 2023 08:56:43
%S A363760 1,8,9,10,40,72,106,218,256,408,424,872,1178,2336,2522,2952,4712,
%T A363760 10088,13290,26648,28906,33784,53160,115624,150842,303784,330138,
%U A363760 385624,603368,1320552,1716170,3462216,3765322,4397144,6864680,15061288,19543834,39454792,42921274,50118936,78175336,171685096
%N A363760 Cycle lengths obtained by repeated application of Klaus Nagel's strip bijection, as described in A307110.
%C A363760 Description provided by Klaus Nagel: (Start)
%C A363760 The strip bijection s (A307110) maps a point P[i,j] from a Z X Z grid to Q[u,v] taken from a second grid obtained from the first one by a rotation by Pi/4 around the origin. The coordinates [i,j] and [u,v] refer to the respective grids. If [u,v] also are considered as coordinates of the first grid, the mapping [i,j] --> [u,v] establishes a permutation of the grid points of Z X Z.
%C A363760 Cycles of this permutation are evaluated; the sequence shows the occurring cycle lengths L.
%C A363760 Q[u,v] is located close to P[i,j]. Changing the reference to the other grid causes a rotation by Pi/4. Hence after eight permutation steps any point should return to the vicinity of its starting position. (End)
%C A363760 Therefore the provided visualizations also include graphs showing only every 8th point for cycles with L divisible by 8.
%C A363760 Examples of cycles with lengths > 10^9 are L = 2536863994 for the starting position [1761546, 1379978], L = 5574310746 for start [5207814, 6746677], and L = 6508768664 for start [7983336, 8380845].
%H A363760 Hugo Pfoertner, <a href="/A363760/a363760.gif">Animated visualization of cycle with L=256</a>, all visited points shown.
%H A363760 Hugo Pfoertner, <a href="/A363760/a363760_1.gif">Animated visualization of cycle with L=256</a>, every 8th visited point shown.
%H A363760 Hugo Pfoertner, <a href="http://www.randomwalk.de/sequences/a363760_40_53160.pdf">Visualization of all terms from L=40 to L=53160</a>. Zoom in to see details.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_115624.pdf">Illustration of a(24) = 115624</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_150842_2.pdf">Illustration of a(25) = 150842</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_303784.pdf">Illustration of a(26) = 303784</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_330138_5.pdf">Illustration of a(27) = 330138</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_385624.pdf">Illustration of a(28) = 385624</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/a363760_603368.pdf">Illustration of a(29) = 603368</a>.
%H A363760 Hugo Pfoertner, <a href="https://www.randomwalk.de/sequences/Cycle_L6508768664.pdf">Illustrations of a cycle of length 6508768664</a>,  including zoom images of the self-similar path details, December 2023.
%H A363760 Hugo Pfoertner, <a href="/A363760/a363760.txt">Examples of starting points for all known cycle lengths</a>, July 2023.
%e A363760 a(1) = 1: p(0, 0) -> [0, 0], p(1, 0) -> [1, 0]. Points mapped onto themselves.
%e A363760 a(2) = 8: [0, 1] -> [-1, 1] -> [-2, 0] -> [-1, -1] -> [0, -1] -> [1, -1] -> [2, 0] -> [1, 1] ->  [0, 1].
%e A363760 a(3) = 9: [1, 6] -> [-3, 5] -> [-6, 2] -> [-6, -2] -> [-3, -5] -> [1, -6] -> [5, -4] -> [6, 0] -> [5, 4] -> [1, 6].
%e A363760 a(4) = 10: [0, 2] -> [-1, 2] -> [-2, 1] -> [-2, -1] -> [-1, -2] -> [0, -2] -> [1, -2] -> [2, -1] -> [2, 1] -> [1, 2] -> [0, 2].
%e A363760 List of start points and corresponding cycle lengths:
%e A363760     y  0   1   2   3   4  5   6   7   8   9  10  11  12  13  14 15 16
%e A363760    x \---------------------------------------------------------------
%e A363760    0 | 1   8  10   8   8 40   8   8   8  40   8   8 106   8   8 40  8
%e A363760    1 | 1   8  10   8   8 40   9  40   8   8 106  40 106   8   8 40  8
%e A363760    2 | 8  10   8   8   8  8   8   8   8   8  40 106   8   8   8  8 40
%e A363760    3 | 8   8   8   8  40  9   8   8   8   8   8   8   8 106   8  8  8
%e A363760    4 | 8   8   8  40   8 40   8   8   8   8   8   8   8   8 106  8  8
%e A363760    5 | 8  40   8  40   9  8   8   8   8   8   8   8   8   8 106  8  8
%e A363760    6 | 9  40   9   8   8 40   8  40 106  40 106   8   8   8 106 72  8
%e A363760    7 | 8   8   8   8   8  8   8   8  40 106   8 106   8 106   8  8 72
%e A363760    8 |40   8   8   8   8  8  40 106   8 106   8   8   8   8   8  8  8
%e A363760    9 | 8   8   8   8   8  8 106  40 106   8   8   8   8   8   8  8  8
%e A363760   10 | 8  40 106   8   8  8   8   8   8   8   8  40   8  40   8  8 72
%e A363760   11 |40 106  40   8   8  8   8 106   8   8  40   8   8   8  40 72  8
%e A363760   12 | 8 106   8 106   8  8   8 106   8   8  40   8   8   8  40  8  8
%e A363760   13 | 8   8   8 106   8  8   8 106   8   8  40   8   8   8  40  8  8
%e A363760   14 | 8   8   8   8 106  8 106   8   8   8   8  40   8  40   8  8  8
%e A363760   15 | 8  40   8   8   8  8   8  72   8   8  72   8   8   8   8  8 40
%e A363760   16 | 8   8  40   8   8  8  72   8   8   8   8  72   8   8   8 40  8
%e A363760 .
%e A363760 a(9) = 256: See links to animated visualizations.
%o A363760 (PARI) C=cos(Pi/8); S=sin(Pi/8); T=S/C; \\ Global constants
%o A363760 \\ The mapping function p
%o A363760 \\ PARI's default precision of 38 digits is sufficient up to abs({x,y})<10^17
%o A363760 p(i,j) = {my (gx=i*C-j*S, gy=i*S+j*C,k, xm, ym, v=[0,0]); k=round(gy/C); ym=C*k;xm=gx+(gy-ym)*T; v[1]=round((xm-ym*T)*C); v[2]=round((ym+v[1]*S)/C); v};
%o A363760 \\ cycle length
%o A363760 cycle(v) = {my (n=1, w=p(v[1],v[2])); while (w!=v, n++; w=p(w[1],w[2])); n};
%o A363760 a363760 (rmax) = {my (L=List()); for (x=0, rmax, for(y=x, rmax, my(c=cycle([x,y])); if(setsearch(L,c)==0, listput(L,c); listsort(L,1)))); L};
%o A363760 a363760(500) \\ takes a few minutes, terms up to a(19), check completeness of list with larger rmax
%Y A363760 Cf. A362955, A362956, A367146, A367893.
%Y A363760 Cf. A367148 (analog of this sequence, but for the triangular lattice).
%K A363760 nonn
%O A363760 1,2
%A A363760 _Hugo Pfoertner_, Jun 26 2023