This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363782 #22 Aug 21 2024 19:34:48 %S A363782 5423,6919,7667,11033,11803,12529,13079,13277,14773,16687,18139,18241, %T A363782 18821,18887,20009,20213,21373,22649,23749,24013,25201,25619,25789, %U A363782 26609,27269,27863,28897,29087,30217,30481,30943,32021,32153,32219,33031,33473,34133,35003,35629,35717,36839 %N A363782 Products of three distinct strong primes. %C A363782 Strong primes: prime(n) > (prime(n-1) + prime(n+1))/2. %H A363782 Harvey P. Dale, <a href="/A363782/b363782.txt">Table of n, a(n) for n = 1..500</a> %e A363782 5423 = 11*17*29 and 11 > (7+13)/2, 17 > (13+19)/2, 29 > (23+31)/2. %e A363782 6919 = 11*17*37 and 11 > (7+13)/2, 17 > (13+19)/2, 37 > (31+41)/2. %t A363782 strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 37000, 2], (f = FactorInteger[#])[[;; , 2]] == {1, 1, 1} && AllTrue[f[[;; , 1]], strongQ] &] (* _Amiram Eldar_, Jun 21 2023 *) %t A363782 Module[{nn=50,strgpr},strgpr=Select[Partition[Prime[Range[nn]],3,1],#[[2]]>(#[[1]]+#[[3]])/2&][[;;,2]];Take[Union[Times@@@Subsets[strgpr,{3}]],nn]] (* _Harvey P. Dale_, Aug 21 2024 *) %Y A363782 Cf. A007304, A051634, A363167, A364738. %K A363782 nonn %O A363782 1,1 %A A363782 _Massimo Kofler_, Jun 21 2023 %E A363782 Definition clarified by _N. J. A. Sloane_, Oct 08 2023