A363790 Numbers k such that k and k+1 are both primitive binary Niven numbers (A363787).
115, 155, 204, 284, 355, 395, 404, 555, 564, 595, 675, 804, 835, 846, 1075, 1124, 1164, 1182, 1266, 1315, 1434, 1555, 1604, 1686, 1795, 1938, 2075, 2124, 2195, 2244, 2315, 2324, 2358, 2435, 2595, 3084, 3204, 3282, 3366, 4124, 4195, 4206, 4235, 4244, 4364, 4458
Offset: 1
Examples
115 is a term since 115 and 116 are both primitive binary Niven numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; q[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]); Select[Range[5000], q[#] && q[# + 1] &]
-
PARI
isbinniv(n) = !(n % hammingweight(n)); isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2)); is(n) = isprim(n) && isprim(n+1);