cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363790 Numbers k such that k and k+1 are both primitive binary Niven numbers (A363787).

Original entry on oeis.org

115, 155, 204, 284, 355, 395, 404, 555, 564, 595, 675, 804, 835, 846, 1075, 1124, 1164, 1182, 1266, 1315, 1434, 1555, 1604, 1686, 1795, 1938, 2075, 2124, 2195, 2244, 2315, 2324, 2358, 2435, 2595, 3084, 3204, 3282, 3366, 4124, 4195, 4206, 4235, 4244, 4364, 4458
Offset: 1

Views

Author

Amiram Eldar, Jun 22 2023

Keywords

Examples

			115 is a term since 115 and 116 are both primitive binary Niven numbers.
		

Crossrefs

Subsequence of A049445, A330931 and A363787.
Subsequences: A363791, A363792.

Programs

  • Mathematica
    binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; q[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]); Select[Range[5000], q[#] && q[# + 1] &]
  • PARI
    isbinniv(n) = !(n % hammingweight(n));
    isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
    is(n) = isprim(n) && isprim(n+1);

A363792 Starts of runs of 4 consecutive integers that are primitive binary Niven numbers (A363787).

Original entry on oeis.org

8255214, 14673870, 29092590, 33185646, 41743854, 47697390, 48069486, 56348622, 56999790, 58116078, 59604462, 60534702, 60813774, 61837038, 62581230, 64069614, 64999854, 65371950, 66581262, 66674286, 75232494, 83418606, 86767470, 88069806, 92255886, 95418702, 96441966, 99511758, 99604782
Offset: 1

Views

Author

Amiram Eldar, Jun 22 2023

Keywords

Comments

There are no runs of 5 or more consecutive integers that are primitive binary Niven numbers (see the second comment in A330933).

Examples

			8255214 is a term since 8255214, 8255215, 8255216 and 8255217 are all primitive binary Niven numbers.
		

Crossrefs

Programs

  • Mathematica
    binNivQ[n_] := Divisible[n, DigitCount[n, 2, 1]]; primBinNivQ[n_] := binNivQ[n] && ! (EvenQ[n] && binNivQ[n/2]);
    seq[kmax_] := Module[{quad = primBinNivQ /@ Range[4], s = {}, k = 5}, While[k < kmax, If[And @@ quad, AppendTo[s, k - 4]]; quad = Join[Rest[quad], {primBinNivQ[k]}]; k++]; s]; seq[3*10^7]
  • PARI
    isbinniv(n) = !(n % hammingweight(n));
    isprim(n) = isbinniv(n) && !(!(n%2) && isbinniv(n/2));
    lista(kmax) = {my(quad = vector(4, i, isprim(i)), k = 5); while(k < kmax, if(vecsum(quad) == 4, print1(k-4, ", ")); quad = concat(vecextract(quad, "^1"), isprim(k)); k++); }
Showing 1-2 of 2 results.