cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363794 a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).

This page as a plain text file.
%I A363794 #13 Jul 08 2024 08:51:06
%S A363794 16,72,540,6300,92400,1681680,36756720,921470550,27886608750,
%T A363794 970453984500,37905932634570
%N A363794 a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).
%C A363794 Let R = r(P(n)) = A010846(A002110(n)) = A363061(n).
%C A363794 Let S(n) be the sorted tensor product of prime power ranges {p(i)^e : i<=n, e>=0}, e.g., S(1) = A000079, S(2) = A003586, S(3) = A051037, etc.
%C A363794 Let T(n) = A002110(n)*S(n). Note that S(1) = T(1) since omega(A002110(1)) = 1.
%C A363794 Let S(n,i) be the i-th term in S(n).
%C A363794 Then a(n) is the smallest S(n,i), i >= R, such that S(n,i) is also in T. Equivalently, a(n) is the smallest S(n,i), i >= R, such that rad(S(n,i)) = A002110(n), where rad(n) = A007947(n).
%F A363794 a(n) >= A363061(n).
%e A363794 a(1) = 16 since r(2^4) = 5 and r(6) = 5; numbers in row 16 of A162306 are its divisors {1, 2, 4, 8, 16}, while row 6 of A162306 is {1, 2, 3, 4, 6}.
%e A363794 a(2) = 72 = A003586(18) since r(72) = r(30) = 18. 72 is the 8th term in A003586 that is not in A000961.
%e A363794 a(3) = 540 since r(540) = 69 which exceeds r(210) = 68.
%e A363794 a(4) = 6300 since r(6300) = 290 which exceeds r(2310) = 283, etc.
%e A363794 Table showing the relationship of a(n) to r(P(n)) = A363061(n), with p(n) = prime(n), P(n+1) = A002110(n+1), r(a(n)) = A010846(a(n)), and j the index such that S(r(a(n))) = T(j) = a(n). a(n) = m*P(n).
%e A363794    n p(n)        P(n+1)          a(n)  r(P(n))  r(a(n))   j    m
%e A363794   --------------------------------------------------------------
%e A363794    1   2             6            16        5        5    4    8
%e A363794    2   3            30            72       18       18    8   12
%e A363794    3   5           210           540       68       69   13   18
%e A363794    4   7          2310          6300      283      290   22   30
%e A363794    5  11         30030         92400     1161     1165   29   40
%e A363794    6  13        510510       1681680     4843     4848   42   56
%e A363794    7  17       9699690      36756720    19985    19994   53   72
%e A363794    8  19     223092870     921470550    83074    83435   68   95
%e A363794    9  23    6469693230   27886608750   349670   351047   89  125
%e A363794   10  29  200560490130  970453984500  1456458  1457926  107  150
%t A363794 nn = 6; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := FactorInteger[x][[-1, 1]]; S = Array[Product[Prime[i], {i, #}] &, nn + 1]; Table[Set[{p, q}, Prime[n + {0, 1}]]; r = Count[Range[S[[n + 1]]], _?(f[#] <= q &)]; c = k = 1; While[Or[c < r, rad[k] != S[[n]]], If[f[k] <= p, c++]; k++]; k, {n, nn}]
%Y A363794 Cf. A000079, A000961, A002110, A002473, A003586, A007947, A010846, A051037, A051038, A080197, A080681, A080682, A080683, A162306, A363061.
%K A363794 nonn,hard,more
%O A363794 1,1
%A A363794 _Michael De Vlieger_, Jun 22 2023