cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363827 Highest power of 2 dividing n which is <= sqrt(n).

This page as a plain text file.
%I A363827 #21 Oct 22 2023 15:05:49
%S A363827 1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,
%T A363827 1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,4,1,2,1,8,1,2,1,4,
%U A363827 1,2,1,8,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,8,1,2,1,4
%N A363827 Highest power of 2 dividing n which is <= sqrt(n).
%F A363827 a(n) = 2^min(A007814(n), A102572(n)). - _Kevin Ryde_, Oct 20 2023
%t A363827 Table[Last[Select[Divisors[n], # <= Sqrt[n] && IntegerQ[Log[2, #]] &]], {n, 100}]
%t A363827 a[n_] := 2^Min[IntegerExponent[n, 2], Floor[Log2[n]/2]]; Array[a, 100] (* _Amiram Eldar_, Oct 19 2023 *)
%o A363827 (PARI) a(n) = if (n==1, 1, vecmax(select(x->((x^2 <= n) && (2^logint(x,2)==x)), divisors(n)))); \\ _Michel Marcus_, Oct 19 2023
%Y A363827 Cf. A006519, A033676, A135517, A363828.
%Y A363827 Cf. A007814, A102572.
%K A363827 easy,nonn
%O A363827 1,4
%A A363827 _Ilya Gutkovskiy_, Oct 19 2023