This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363844 #9 Jul 17 2024 08:58:08 %S A363844 0,0,0,5,95,1548,23110,413508,8020826,186514437,5447473481, %T A363844 169902931273,6317112341154,260105450523376,11228680152402376, %U A363844 529602052783103298,28154196548377380922,1665532558381753842459,101854713853486313230170,6839699495691464491151135,486637286249491454965285898 %N A363844 Number of k <= P(n) such that gcd(k,P(n)) > 1, yet there is a prime q | k that does not divide P(n), where P(n) = A002110(n). %F A363844 a(n) = A243823(A002110(n)). %F A363844 a(n) = P(n) - A000010(P(n)) - A010846(P(n)) + 1, where P(n) = A002110(n). %F A363844 a(n) = A002110(n) - A005867(n) - A363061(n) + 1. %e A363844 a(0) = 0 since P(0) = 1; phi(1) = 1 and A010846(1) = 1, hence 1 - 1 - 1 + 1 = 0. %e A363844 a(1) = 0 since P(1) = 2; phi(2) = 1 and A010846(2) = 2, hence 2 - 1 - 2 + 1 = 0. %e A363844 a(2) = 0 since P(2) = 6; phi(6) = 2 and A010846(6) = 5, hence 6 - 2 - 5 + 1 = 0. %e A363844 a(3) = 5 since P(3) = 30; phi(30) = 8 and A010846(6) = 5, hence 30 - 8 - 18 + 1 = 5. We can also look at this as the cardinality of the set {1..30} \ ({1, 7, 11, 13, 17, 19, 23, 29} U {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30}) = {14, 21, 22, 26, 28}, therefore a(3) = 5. %e A363844 Table relating a(n) to A002110(n), A363061(n), and A005867(n). %e A363844 n A002110(n) A363061(n) a(n) A005867(n) %e A363844 -------------------------------------------- %e A363844 0 1 1 0 1 %e A363844 1 2 2 0 1 %e A363844 2 6 5 0 2 %e A363844 3 30 18 5 8 %e A363844 4 210 68 95 48 %e A363844 5 2310 283 1548 480 %e A363844 6 30030 1161 23110 5760 %e A363844 7 510510 4843 413508 92160 %e A363844 8 9699690 19985 8020826 1658880 %e A363844 ... %t A363844 b = Map[Last[ToExpression /@ StringSplit[#]] &, Split[Import["https://oeis.org/A363061/b363061.txt", "Data"]][[2 ;; -1, -1]]]; Array[(If[# == 0, Set[{k, p}, {1, 1}], p *= Prime[#]; k *= (Prime[#] - 1)]; p - k - b[[# + 1]] + 1) &, Length[b], 0] %Y A363844 Cf. A000010, A002110, A005867, A243823, A363061. %K A363844 nonn,hard %O A363844 0,4 %A A363844 _Michael De Vlieger_, Jun 23 2023