This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363847 #8 Jul 09 2023 02:43:46 %S A363847 1,2,3,7,8,15,32,63,224,255,512,3968,4095,14336,32768,65535,180224, %T A363847 262143,1048575,14680064,16777215,134217728,268435455,1073741823, %U A363847 8589934592,12884901887,34359738368,68719476735,1099511627775,4398046511103,17592186044415,35184372088832 %N A363847 Numbers k such that Omega(m*(m+1)) < Omega(k*(k+1)) for all m < k, where Omega(k) is the number of prime divisors of k counted with multiplicity (A001222). %C A363847 Terms a(2)-a(18) were found by Erdős and Nicolas (1978-1979). %C A363847 Equivalently, numbers k such that Omega(m) + Omega(m+1) < Omega(k) + Omega(k+1), for all m < k. %C A363847 The corresponding record values are 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 20, 22, 24, 26, 27, 31, 33, 34, 37, 38, 39, 40, 46, 48, 50, 51, 52, ... . %H A363847 Paul Erdős and Jean-Louis Nicolas, <a href="http://www.numdam.org/item/?id=SDPP_1978-1979__20_2_A9_0">Sur la fonction "nombre de facteurs premiers de n"</a>, Séminaire Delange-Pisot-Poitou, Théorie des nombres, Vol. 20, No. 2 (1978-1979), Talk no. 32, pp. 1-19. See p. 10. %t A363847 seq[kmax_] := Module[{o1 = 0, o2, om = 0, s = {}}, Do[o2 = PrimeOmega[k]; o = o1 + o2; If[o > om, om = o; AppendTo[s, k - 1]]; o1 = o2, {k, 2, kmax}]; s]; seq[10^5] %o A363847 (PARI) lista(kmax) = {my(o1 = 0, o2, om = 0); for(k = 2, kmax, o2 = bigomega(k); o = o1 + o2; if(o > om, om = o; print1(k-1, ", ")); o1 = o2); } %Y A363847 Cf. A002378, A001222, A059958, A075088, A076550. %K A363847 nonn %O A363847 1,2 %A A363847 _Amiram Eldar_, Jun 24 2023 %E A363847 a(29)-a(32) from _Martin Ehrenstein_, Jul 08 2023