cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363850 Number of divisors of 7*n-3 of form 7*k+1.

This page as a plain text file.
%I A363850 #14 Jun 25 2023 10:39:22
%S A363850 1,1,1,1,2,1,1,1,2,1,1,1,3,1,1,1,2,1,1,1,3,1,1,2,2,1,1,1,3,1,1,1,2,1,
%T A363850 2,1,3,1,2,1,2,1,1,1,3,2,1,1,2,1,1,1,3,2,1,1,4,1,1,1,3,1,1,1,2,1,1,2,
%U A363850 4,1,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3,1,1,1,2,2,1,1,4,1,1,1,2,1,2,1
%N A363850 Number of divisors of 7*n-3 of form 7*k+1.
%C A363850 Also number of divisors of 7*n-3 of form 7*k+4.
%F A363850 a(n) = A279061(7*n-3) = A363806(7*n-3).
%F A363850 G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(7*k-6)).
%F A363850 G.f.: Sum_{k>0} x^k/(1 - x^(7*k-3)).
%t A363850 a[n_] := DivisorSum[7*n - 3, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *)
%o A363850 (PARI) a(n) = sumdiv(7*n-3, d, d%7==1);
%Y A363850 Cf. A279061, A363806.
%K A363850 nonn
%O A363850 1,5
%A A363850 _Seiichi Manyama_, Jun 24 2023