cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363852 Number of divisors of 7*n-5 of form 7*k+1.

This page as a plain text file.
%I A363852 #16 Jun 25 2023 09:43:01
%S A363852 1,1,2,1,2,1,2,1,2,1,3,1,2,1,2,1,2,1,3,2,2,1,2,1,2,1,3,1,3,1,2,1,2,1,
%T A363852 4,1,2,2,2,1,2,1,3,1,2,1,3,1,2,2,4,1,2,1,2,2,2,1,3,1,2,1,2,1,4,1,4,1,
%U A363852 2,1,2,1,3,2,3,1,2,1,2,2,2,1,5,1,2,1,2,1,2,1,3,2,2,1,4,2,2,1,4,1
%N A363852 Number of divisors of 7*n-5 of form 7*k+1.
%C A363852 Also number of divisors of 7*n-5 of form 7*k+2.
%F A363852 a(n) = A279061(7*n-5) = A363795(7*n-5).
%F A363852 G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(7*k-6)).
%F A363852 G.f.: Sum_{k>0} x^k/(1 - x^(7*k-5)).
%t A363852 a[n_] := DivisorSum[7*n - 5, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *)
%o A363852 (PARI) a(n) = sumdiv(7*n-5, d, d%7==1);
%Y A363852 Cf. A279061, A363795.
%K A363852 nonn
%O A363852 1,3
%A A363852 _Seiichi Manyama_, Jun 24 2023