cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363853 Number of divisors of 7*n-6 of form 7*k+1.

This page as a plain text file.
%I A363853 #13 Jun 25 2023 09:42:51
%S A363853 1,2,2,2,2,2,2,2,2,3,2,2,2,2,2,2,2,4,2,2,2,2,2,2,2,4,2,2,2,2,2,2,3,4,
%T A363853 2,2,2,2,2,2,2,4,2,2,2,2,2,4,2,4,2,2,2,2,2,2,2,4,2,2,2,2,4,2,2,4,2,2,
%U A363853 2,3,2,2,2,4,2,2,2,4,2,2,2,4,2,2,2,2,2,2,2,4,2,4,4,2,2,2,2,4,2,2
%N A363853 Number of divisors of 7*n-6 of form 7*k+1.
%F A363853 a(n) = A279061(7*n-6).
%F A363853 G.f.: Sum_{k>0} x^k/(1 - x^(7*k-6)).
%t A363853 a[n_] := DivisorSum[7*n - 6, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *)
%o A363853 (PARI) a(n) = sumdiv(7*n-6, d, d%7==1);
%Y A363853 Cf. A359212, A359238, A359309.
%Y A363853 Cf. A279061.
%K A363853 nonn
%O A363853 1,2
%A A363853 _Seiichi Manyama_, Jun 24 2023