This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363869 #18 Apr 27 2024 07:58:19 %S A363869 1,55,12559,3685123,1205189519,418856591055,151353475289275, %T A363869 56193989426243199,21283943385478109071,8185785098679048061837, %U A363869 3186604888590691870779559,1252744279186835597251089055,496508748101370063304243706939,198134918989716743103591120933103 %N A363869 a(n) = A108625(3*n, 2*n). %C A363869 a(n) = B(3*n, 2*n, 3*n) in the notation of Straub, equation 24. It follows from Straub, Theorem 3.2, that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k. %C A363869 More generally, for positive integers r and s the sequence {A108625(r*n, s*n) : n >= 0} satisfies the same supercongruences. %C A363869 For other cases, see A099601 (r = 2, s = 1), A363867 (r = 1, s = 2), A363868 (r = 3, s = 1), A363870 (r = 1, s = 3) and A363871 (r = 2, s = 3). %H A363869 Paolo Xausa, <a href="/A363869/b363869.txt">Table of n, a(n) for n = 0..350</a> %H A363869 Peter Bala, <a href="/A363869/a363869.pdf">A recurrence for A363869</a> %F A363869 a(n) = Sum_{k = 0..2*n} binomial(3*n, k)^2 * binomial(5*n-k, 3*n). %F A363869 a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(3*n, k)*binomial(5*n-k, 3*n)^2. %F A363869 a(n) = hypergeom( [-2*n, -3*n, 3*n+1], [1, 1], 1). %F A363869 a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)). %F A363869 a(n) ~ 2^(4*n) * 3^(3*n) / (sqrt(5)*Pi*n). - _Vaclav Kotesovec_, Apr 27 2024 %p A363869 A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1): %p A363869 seq(simplify(A108625(3*n, 2*n)), n = 0..20); %t A363869 A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1]; %t A363869 Array[A363869, 20, 0] (* _Paolo Xausa_, Feb 26 2024 *) %Y A363869 Cf. A005258, A099601, A108625, A363864 - A363871. %K A363869 nonn,easy %O A363869 0,2 %A A363869 _Peter Bala_, Jun 27 2023