cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363879 Number of divisors of 7*n-6 of form 7*k+2.

This page as a plain text file.
%I A363879 #11 Jun 25 2023 10:40:21
%S A363879 0,1,0,1,0,2,0,1,0,2,0,1,0,2,1,1,0,2,0,1,0,2,0,2,0,3,0,1,0,2,0,1,1,2,
%T A363879 0,1,1,2,0,1,0,4,0,1,0,2,0,2,0,2,1,1,0,2,0,1,0,3,1,3,0,2,0,1,0,2,0,1,
%U A363879 1,3,0,1,0,3,0,1,0,4,0,1,1,2,1,1,0,2,1,1,0,3,0,2,0,2,0,3,0,2,0,1
%N A363879 Number of divisors of 7*n-6 of form 7*k+2.
%C A363879 Also number of divisors of 7*n-6 of form 7*k+4.
%F A363879 a(n) = A363795(7*n-6) = A363806(7*n-6).
%F A363879 G.f.: Sum_{k>0} x^(4*k-2)/(1 - x^(7*k-5)).
%F A363879 G.f.: Sum_{k>0} x^(2*k)/(1 - x^(7*k-3)).
%t A363879 a[n_] := DivisorSum[7*n - 6, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *)
%o A363879 (PARI) a(n) = sumdiv(7*n-6, d, d%7==2);
%Y A363879 Cf. A363795, A363806.
%K A363879 nonn
%O A363879 1,6
%A A363879 _Seiichi Manyama_, Jun 25 2023