This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363896 #51 Aug 07 2023 14:54:10 %S A363896 9,15,16,42 %N A363896 Numbers k such that the sum of primes dividing k (with repetition) is equal to Euler's totient function of k. %C A363896 No more terms less than 1.6*10^7. %F A363896 {k : A001414(k) = A000010(k)}. %t A363896 Select[Range[2, 1000], EulerPhi[#] == Plus @@ Times @@@ FactorInteger[#] &] (* _Amiram Eldar_, Jun 27 2023 *) %o A363896 (Python) %o A363896 from sympy import factorint,totient %o A363896 A001414 = lambda k: sum(p*e for p, e in factorint(k).items()) %o A363896 def g(): %o A363896 k = 2 %o A363896 while True: %o A363896 if A001414(k) == totient(k): yield(k) %o A363896 k += 1 %o A363896 for a_n in g(): %o A363896 print(a_n) %o A363896 (PARI) is(k) = my(f=factor(k)); f[, 1]~*f[, 2] == eulerphi(f); \\ _Amiram Eldar_, Jun 27 2023 %Y A363896 Subsequence of A257048. %Y A363896 Other sequences requiring a specific relationship between A000010(k) and A001414(k): A173327, A237798, A280936. %K A363896 nonn,more %O A363896 1,1 %A A363896 _DarĂo Clavijo_, Jun 26 2023