cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363905 Numbers whose square and cube taken together contain each decimal digit.

This page as a plain text file.
%I A363905 #20 Jun 28 2023 07:50:28
%S A363905 69,128,203,302,327,366,398,467,542,591,593,598,633,643,669,690,747,
%T A363905 759,903,923,943,1016,1018,1027,1028,1043,1086,1112,1182,1194,1199,
%U A363905 1233,1278,1280,1282,1328,1336,1364,1396,1419,1459,1463,1467,1472,1475
%N A363905 Numbers whose square and cube taken together contain each decimal digit.
%C A363905 The first term, a(1) = 69, is the only number for which the square and the cube together contain each decimal digit 0 to 9 exactly once.
%C A363905 a(820) = 6534 is the only number of which the square and cube taken together contain each digit 0 to 9 exactly twice.
%H A363905 Robert G. Wilson v, <a href="/A363905/b363905.txt">Table of n, a(n) for n = 1..10000</a>
%H A363905 Harold Suarez, <a href="https://www.linkedin.com/feed/update/urn:li:activity:7073402002042417152">Interesting...</a>, Number Theory group on LinkedIn, June 2023.
%e A363905 69^2 = 4761, 69^3 = 328509, which together contain each digit 0-9 exactly once.
%t A363905 fQ[n_] := Union[ Join[ IntegerDigits[n^2], IntegerDigits[n^3]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; Select[Range@1500, fQ] (* _Robert G. Wilson v_, Jun 27 2023 *)
%o A363905 (PARI) is(k)=#setunion(Set(digits(k^2)),Set(digits(k^3)))>9
%o A363905 select(is,[1..9999])
%o A363905 (Python)
%o A363905 from itertools import count, islice
%o A363905 def A363905_gen(startvalue=1): # generator of terms >= startvalue
%o A363905     return filter(lambda n:len(set(str(n**2))|set(str(n**3)))==10,count(max(startvalue,1)))
%o A363905 A363905_list = list(islice(A363905_gen(),20)) # _Chai Wah Wu_, Jun 27 2023
%Y A363905 Cf. A036744, A054038, A071519 and A156977 for "pandigital" squares.
%Y A363905 Cf. A119735: Numbers n such that every digit occurs at least once in n^3.
%K A363905 nonn,base,less
%O A363905 1,1
%A A363905 _M. F. Hasler_, Jun 27 2023