A363916 Array read by descending antidiagonals. A(n, k) = Sum_{d=0..k} A363914(k, d) * n^d.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 6, 6, 4, 1, 0, 0, 12, 24, 12, 5, 1, 0, 0, 30, 72, 60, 20, 6, 1, 0, 0, 54, 240, 240, 120, 30, 7, 1, 0, 0, 126, 696, 1020, 600, 210, 42, 8, 1, 0, 0, 240, 2184, 4020, 3120, 1260, 336, 56, 9, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, 1, 0, 0, 0, 0, 0, 0, 0, ... A019590 [2] 1, 2, 2, 6, 12, 30, 54, 126, 240, ... A027375 [3] 1, 3, 6, 24, 72, 240, 696, 2184, 6480, ... A054718 [4] 1, 4, 12, 60, 240, 1020, 4020, 16380, 65280, ... A054719 [5] 1, 5, 20, 120, 600, 3120, 15480, 78120, 390000, ... A054720 [6] 1, 6, 30, 210, 1260, 7770, 46410, 279930, 1678320, ... A054721 [7] 1, 7, 42, 336, 2352, 16800, 117264, 823536, 5762400, ... A218124 [8] 1, 8, 56, 504, 4032, 32760, 261576, 2097144, 16773120, ... A218125 A000012|A002378| A047928 | A218130 | A218131 A001477,A007531, A061167, A133499, (diagonal A252764) . Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 0, 2, 1; [4] 0, 0, 2, 3, 1; [5] 0, 0, 6, 6, 4, 1; [6] 0, 0, 12, 24, 12, 5, 1; [7] 0, 0, 30, 72, 60, 20, 6, 1; [8] 0, 0, 54, 240, 240, 120, 30, 7, 1;
Links
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Crossrefs
Programs
-
Maple
A363916 := (n, k) -> local d; add(A363914(k, d) * n^d, d = 0 ..k): for n from 0 to 9 do seq(A363916(n, k), k = 0..8) od;
-
SageMath
def A363916(n, k): return sum(A363914(k, d) * n^d for d in range(k + 1)) for n in range(9): print([A363916(n, k) for k in srange(9)]) def T(n, k): return A363916(k, n - k)
Comments