cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363941 Low median in the multiset of prime indices of n.

This page as a plain text file.
%I A363941 #9 Jul 02 2023 09:02:08
%S A363941 0,1,2,1,3,1,4,1,2,1,5,1,6,1,2,1,7,2,8,1,2,1,9,1,3,1,2,1,10,2,11,1,2,
%T A363941 1,3,1,12,1,2,1,13,2,14,1,2,1,15,1,4,3,2,1,16,2,3,1,2,1,17,1,18,1,2,1,
%U A363941 3,2,19,1,2,3,20,1,21,1,3,1,4,2,22,1,2,1
%N A363941 Low median in the multiset of prime indices of n.
%C A363941 The low median (see A124943) in a multiset is either the middle part (for odd length), or the least of the two middle parts (for even length).
%C A363941 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A363941 The prime indices of 90 are {1,2,2,3}, with low median 2, so a(90) = 2.
%e A363941 The prime indices of 150 are {1,2,3,3}, with low median 2, so a(150) = 2.
%t A363941 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A363941 mell[y_]:=If[Length[y]==0,0, If[OddQ[Length[y]],y[[(Length[y]+1)/2]],y[[Length[y]/2]]]];
%t A363941 Table[mell[prix[n]],{n,30}]
%Y A363941 Positions of first appearances are 1 and A000040.
%Y A363941 The triangle for this statistic (low median) is A124943, high A124944.
%Y A363941 Median of prime indices is A360005(n)/2.
%Y A363941 For mode instead of median we have A363486, high A363487.
%Y A363941 Positions of 1's are A363488.
%Y A363941 The high version is A363942.
%Y A363941 A067538 counts partitions with integer mean, ranked by A316413.
%Y A363941 A112798 lists prime indices, length A001222, sum A056239.
%Y A363941 A363943 gives low mean of prime indices, triangle A363945.
%Y A363941 A363944 gives high mean of prime indices, triangle A363946.
%Y A363941 Cf. A025065, A215366, A326567/A326568, A344296, A359889, A359908, A363727, A363740.
%K A363941 nonn
%O A363941 1,3
%A A363941 _Gus Wiseman_, Jul 01 2023