cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363945 Triangle read by rows where T(n,k) is the number of integer partitions of n with low mean k.

This page as a plain text file.
%I A363945 #8 Jun 30 2023 18:32:50
%S A363945 1,0,1,0,1,1,0,2,0,1,0,2,2,0,1,0,4,2,0,0,1,0,4,3,3,0,0,1,0,7,4,3,0,0,
%T A363945 0,1,0,7,10,0,4,0,0,0,1,0,12,6,7,4,0,0,0,0,1,0,12,16,8,0,5,0,0,0,0,1,
%U A363945 0,19,21,10,0,5,0,0,0,0
%N A363945 Triangle read by rows where T(n,k) is the number of integer partitions of n with low mean k.
%C A363945 Extending the terminology of A124943, the "low mean" of a multiset is its mean rounded down.
%e A363945 Triangle begins:
%e A363945   1
%e A363945   0  1
%e A363945   0  1  1
%e A363945   0  2  0  1
%e A363945   0  2  2  0  1
%e A363945   0  4  2  0  0  1
%e A363945   0  4  3  3  0  0  1
%e A363945   0  7  4  3  0  0  0  1
%e A363945   0  7 10  0  4  0  0  0  1
%e A363945   0 12  6  7  4  0  0  0  0  1
%e A363945   0 12 16  8  0  5  0  0  0  0  1
%e A363945   0 19 21 10  0  5  0  0  0  0  0  1
%e A363945   0 19 24 15 12  0  6  0  0  0  0  0  1
%e A363945   0 30 32 18 14  0  6  0  0  0  0  0  0  1
%e A363945   0 30 58 23 16  0  0  7  0  0  0  0  0  0  1
%e A363945   0 45 47 57  0 19  0  7  0  0  0  0  0  0  0  1
%e A363945 Row k = 8 counts the following partitions:
%e A363945   .  (41111)     (611)   .  (71)  .  .  .  (8)
%e A363945      (32111)     (521)      (62)
%e A363945      (311111)    (5111)     (53)
%e A363945      (22211)     (431)      (44)
%e A363945      (221111)    (422)
%e A363945      (2111111)   (4211)
%e A363945      (11111111)  (332)
%e A363945                  (3311)
%e A363945                  (3221)
%e A363945                  (2222)
%t A363945 meandown[y_]:=If[Length[y]==0,0,Floor[Mean[y]]];
%t A363945 Table[Length[Select[IntegerPartitions[n],meandown[#]==k&]],{n,0,15},{k,0,n}]
%Y A363945 Row sums are A000041.
%Y A363945 Column k = 1 is A025065, ranks A363949.
%Y A363945 For median instead of mean we have triangle A124943, high A124944.
%Y A363945 Column k = 2 is A363745.
%Y A363945 For median instead of mean we have rank statistic A363941, high A363942.
%Y A363945 The rank statistic for this triangle is A363943.
%Y A363945 The high version is A363946, rank statistic A363944.
%Y A363945 For mode instead of mean we have A363952, rank statistic A363486.
%Y A363945 For high mode instead of mean we have A363953, rank statistic A363487.
%Y A363945 A008284 counts partitions by length, A058398 by mean.
%Y A363945 A051293 counts subsets with integer mean, median A000975.
%Y A363945 A067538 counts partitions with integer mean, strict A102627, ranks A316413.
%Y A363945 A349156 counts partitions with non-integer mean, ranks A348551.
%Y A363945 Cf. A002865, A026905, A237984, A327472, A327482, A344296, A362612, A363723, A363724, A363731, A363951.
%K A363945 nonn,tabl
%O A363945 0,8
%A A363945 _Gus Wiseman_, Jun 30 2023