This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363947 #14 Jul 09 2023 08:33:40 %S A363947 0,1,1,1,2,2,2,4,4,4,7,7,7,12,12,12,19,19,19,30,30,30,45,45,45,67,67, %T A363947 67,97,97,97,139,139,139,195,195,195,272,272,272,373,373,373,508,508, %U A363947 508,684,684,684,915,915,915,1212,1212,1212,1597,1597,1597,2087 %N A363947 Number of integer partitions of n with mean < 3/2. %e A363947 The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5. %e A363947 The a(1) = 1 through a(8) = 4 partitions: %e A363947 (1) (11) (111) (211) (2111) (21111) (22111) (221111) %e A363947 (1111) (11111) (111111) (31111) (311111) %e A363947 (211111) (2111111) %e A363947 (1111111) (11111111) %t A363947 Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}] %Y A363947 The high version is A000012 (all ones). %Y A363947 This is A000070 with each term repeated three times (see A025065 for two). %Y A363947 These partitions have ranks A363948. %Y A363947 The complement is counted by A364059. %Y A363947 A008284 counts partitions by length, A058398 by mean. %Y A363947 A051293 counts subsets with integer mean, median A000975. %Y A363947 A067538 counts partitions with integer mean, strict A102627, ranks A316413. %Y A363947 A327482 counts partitions by integer mean. %Y A363947 A349156 counts partitions with non-integer mean, ranks A348551. %Y A363947 Cf. A000041, A002865, A026905, A027336, A237984, A241131, A327472, A363724, A363745, A363943, A363949. %K A363947 nonn %O A363947 0,5 %A A363947 _Gus Wiseman_, Jul 02 2023