This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363950 #6 Jul 06 2023 08:56:01 %S A363950 3,6,9,10,12,18,20,24,27,28,30,36,40,48,54,56,60,72,80,81,84,88,90,96, %T A363950 100,108,112,120,144,160,162,168,176,180,192,200,208,216,224,240,243, %U A363950 252,264,270,280,288,300,320,324,336,352,360,384,400,416,432,448 %N A363950 Numbers whose prime indices have rounded-up mean 2. %C A363950 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A363950 The terms together with their prime indices begin: %e A363950 3: {2} %e A363950 6: {1,2} %e A363950 9: {2,2} %e A363950 10: {1,3} %e A363950 12: {1,1,2} %e A363950 18: {1,2,2} %e A363950 20: {1,1,3} %e A363950 24: {1,1,1,2} %e A363950 27: {2,2,2} %e A363950 28: {1,1,4} %e A363950 30: {1,2,3} %e A363950 36: {1,1,2,2} %e A363950 40: {1,1,1,3} %e A363950 48: {1,1,1,1,2} %e A363950 54: {1,2,2,2} %e A363950 56: {1,1,1,4} %e A363950 60: {1,1,2,3} %e A363950 72: {1,1,1,2,2} %e A363950 80: {1,1,1,1,3} %e A363950 81: {2,2,2,2} %t A363950 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A363950 Select[Range[1000],Ceiling[Mean[prix[#]]]==2&] %Y A363950 For mean 1 we have A000079 except 1. %Y A363950 Partitions of this type are counted by A026905 redoubled. %Y A363950 Equals the complement of A000079 in A344296. %Y A363950 Positions of 2's in A363944 (counted by column 2 of A363946). %Y A363950 For rounded mean 1 we have A363948, counted by A363947. %Y A363950 For rounded-down mean 1 we have A363949, counted by A025065. %Y A363950 The rounded-down or low version is A363954, counted by A363745. %Y A363950 A316413 ranks partitions with integer mean, counted by A067538. %Y A363950 A112798 lists prime indices, length A001222, sum A056239. %Y A363950 A326567/A326568 gives mean of prime indices. %Y A363950 A363941 gives low median of prime indices, triangle A124943. %Y A363950 A363942 gives high median of prime indices, triangle A124944. %Y A363950 Cf. A327473, A327476, A359889, A360005, A360013, A360015, A363727, A363943. %K A363950 nonn %O A363950 1,1 %A A363950 _Gus Wiseman_, Jul 05 2023