cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363952 Number of integer partitions of n with low mode k.

This page as a plain text file.
%I A363952 #7 Jul 07 2023 23:09:10
%S A363952 1,0,1,0,1,1,0,2,0,1,0,3,1,0,1,0,4,2,0,0,1,0,7,2,1,0,0,1,0,9,3,2,0,0,
%T A363952 0,1,0,13,5,2,1,0,0,0,1,0,18,6,3,2,0,0,0,0,1,0,26,9,3,2,1,0,0,0,0,1,0,
%U A363952 32,13,5,3,2,0,0,0,0,0,1,0,47,16,7,3,2,1,0,0,0,0,0,1
%N A363952 Number of integer partitions of n with low mode k.
%C A363952 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
%C A363952 Extending the terminology of A124943, the "low mode" of a multiset is the least mode.
%e A363952 Triangle begins:
%e A363952    1
%e A363952    0   1
%e A363952    0   1   1
%e A363952    0   2   0   1
%e A363952    0   3   1   0   1
%e A363952    0   4   2   0   0   1
%e A363952    0   7   2   1   0   0   1
%e A363952    0   9   3   2   0   0   0   1
%e A363952    0  13   5   2   1   0   0   0   1
%e A363952    0  18   6   3   2   0   0   0   0   1
%e A363952    0  26   9   3   2   1   0   0   0   0   1
%e A363952    0  32  13   5   3   2   0   0   0   0   0   1
%e A363952    0  47  16   7   3   2   1   0   0   0   0   0   1
%e A363952    0  60  21  10   4   3   2   0   0   0   0   0   0   1
%e A363952    0  79  30  13   6   3   2   1   0   0   0   0   0   0   1
%e A363952    0 104  38  17   7   4   3   2   0   0   0   0   0   0   0   1
%e A363952 Row n = 8 counts the following partitions:
%e A363952   .  (71)        (62)     (53)   (44)  .  .  .  (8)
%e A363952      (611)       (422)    (332)
%e A363952      (521)       (3221)
%e A363952      (5111)      (2222)
%e A363952      (431)       (22211)
%e A363952      (4211)
%e A363952      (41111)
%e A363952      (3311)
%e A363952      (32111)
%e A363952      (311111)
%e A363952      (221111)
%e A363952      (2111111)
%e A363952      (11111111)
%t A363952 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t A363952 Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]
%Y A363952 Row sums are A000041.
%Y A363952 For median: A124943 (high A124944), rank statistic A363941 (high A363942).
%Y A363952 Column k = 1 is A241131 (partitions w/ low mode 1), ranks A360015, A360013.
%Y A363952 The rank statistic for this triangle is A363486.
%Y A363952 For mean: A363945 (high A363946), rank statistic A363943 (high A363944).
%Y A363952 The high version is A363953.
%Y A363952 A008284 counts partitions by length, A058398 by mean.
%Y A363952 A362612 counts partitions (max part) = (unique mode), ranks A362616.
%Y A363952 A362614 counts partitions by number of modes, rank statistic A362611.
%Y A363952 A362615 counts partitions by number of co-modes, rank statistic A362613.
%Y A363952 Cf. A362610, A362608, A362607, A362609; A359178, A356862, A362605, A362606.
%Y A363952 Cf. A002865, A025065, A026905, A067538, A237984, A363723, A363724, A363731.
%K A363952 nonn,tabl
%O A363952 0,8
%A A363952 _Gus Wiseman_, Jul 07 2023