A363953 Number of integer partitions of n with high mode k.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 7, 2, 1, 2, 1, 1, 1, 0, 9, 4, 2, 2, 2, 1, 1, 1, 0, 13, 6, 2, 2, 2, 2, 1, 1, 1, 0, 18, 7, 4, 3, 3, 2, 2, 1, 1, 1, 0, 26, 10, 5, 2, 3, 3, 2, 2, 1, 1, 1
Offset: 0
Keywords
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 2 1 1 1 0 3 1 1 1 1 0 4 2 2 1 1 1 0 7 2 1 2 1 1 1 0 9 4 2 2 2 1 1 1 0 13 6 2 2 2 2 1 1 1 0 18 7 4 3 3 2 2 1 1 1 0 26 10 5 2 3 3 2 2 1 1 1 0 32 15 8 4 4 4 3 2 2 1 1 1 0 47 19 9 5 3 4 4 3 2 2 1 1 1 0 60 26 13 7 5 5 5 4 3 2 2 1 1 1 0 79 34 18 10 6 5 5 5 4 3 2 2 1 1 1 Row n = 9 counts the following partitions: . (711) (522) (333) (441) (54) (63) (72) (81) (9) (6111) (4221) (3321) (432) (531) (621) (5211) (3222) (51111) (32211) (4311) (22221) (42111) (222111) (411111) (33111) (321111) (3111111) (2211111) (21111111) (111111111)
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,Last[modes[#]]]==k&]],{n,0,15},{k,0,n}]
Comments