This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363958 #18 Jul 04 2023 11:52:41 %S A363958 1,1,1,2,3,4,7,10,16,23,37,53,86,123,199,285,461,660,1068,1529,2474, %T A363958 3542,5731,8205,13276,19007,30754,44030,71242,101996,165033,236275, %U A363958 382301,547334,885605,1267906,2051515,2937120 %N A363958 Expansion of (1 + x + x^3)/(1 - x^2 - 2*x^4 - 2*x^6 + x^8). %C A363958 a(n) is the number of ways to tile a zig-zag strip of n cells using squares (of length 1), strips (of length 3), and triangles (using 3 cells), where the zig-zag strip begins below the center line. Here is the zig-zag strip corresponding to n=12, with 12 cells: %C A363958 ___ ___ ___ %C A363958 | | | | | | %C A363958 _|_ _|_ _|_ _|_ _|_ _|_ %C A363958 | | | | | | | %C A363958 _|___|___|___|___|_ _|___| %C A363958 | | | | | | %C A363958 |___| |___| |___|, %C A363958 and here are the three possible triangles and strips (which can also be rotated or reflected): %C A363958 ___ %C A363958 | | %C A363958 _| _| ___ %C A363958 | | | | %C A363958 _| __| ___ ___ ___ _| |_ %C A363958 | | | | | | %C A363958 |___|, |___ ___ ___|, |___ ___|. %C A363958 As an example, here is one of the a(12) = 86 ways to tile the skew double-strip of 12 cells: %C A363958 ___ ___ ___ %C A363958 | | | | | | %C A363958 _| _|___|_ _|___|___|_ %C A363958 | | | | %C A363958 _| __|_ _|___________| %C A363958 | | | | | | %C A363958 |___| |___| |___|. %H A363958 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,2,0,2,0,1). %F A363958 a(n) = a(n-2) + 2*a(n-4) + 2*a(n-6) + a(n-8). %F A363958 a(2*n) = a(2*n-1) + a(2*n-3) + a(2*n-5). %F A363958 a(2*n) = A123392(n). %F A363958 a(2*n+1) = a(2*n) + a(2*n-2). %F A363958 a(2*n+1) = A210460(n+1). %t A363958 LinearRecurrence[{0, 1, 0, 2, 0, 2, 0, 1}, {1, 1, 1, 2, 3, 4, 7, 10}, 50] %Y A363958 Cf. A077998. Alternate terms are A123392 and A210460. %K A363958 nonn,easy %O A363958 0,4 %A A363958 _Greg Dresden_ and Yunxin Li, Jun 29 2023