cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363976 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(3*k))^3.

This page as a plain text file.
%I A363976 #9 Jun 30 2023 15:35:54
%S A363976 0,1,0,1,3,1,0,7,0,4,10,1,0,16,3,7,21,1,0,32,0,11,36,7,3,46,0,16,55,4,
%T A363976 0,73,10,22,81,1,0,92,0,38,105,16,0,131,3,37,136,7,0,157,21,46,171,1,
%U A363976 13,212,0,56,210,32,0,232,0,73,256,11,0,298,36,97,300,7,0,326,3,92,361,46,0
%N A363976 Expansion of Sum_{k>0} x^(2*k) / (1 - x^(3*k))^3.
%F A363976 G.f.: Sum_{k>0} k*(k+1)/2 * x^(3*k-1) / (1 - x^(3*k-1)).
%F A363976 a(n) = Sum_{d|n, d==2 mod 3} binomial((d+1)/3+1,2).
%t A363976 a[n_] := DivisorSum[n, Binomial[(#+1)/3+1,2] &, Mod[#, 3] == 2 &]; Array[a, 100] (* _Amiram Eldar_, Jun 30 2023 *)
%o A363976 (PARI) a(n) = sumdiv(n, d, (d%3==2)*binomial((d+1)/3+1, 2));
%Y A363976 Cf. A363971.
%K A363976 nonn
%O A363976 1,5
%A A363976 _Seiichi Manyama_, Jun 30 2023