This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363981 #48 Sep 14 2023 00:53:51 %S A363981 1,2,5,11,13,14,17,23,29,38,41,43,46,47,53,58,59,61,67,68,71,73,74,83, %T A363981 86,89,94,95,101,103,107,109,111,113,116,118,122,123,127,131,137,138, %U A363981 143,149,151,158,163,167,172,173,178,179,181,188,191,193,194,197 %N A363981 Integers k such that the smallest integer with k factor pairs has an odd number of divisors. %C A363981 A factor pair of an integer k is an unordered pair of positive integers (a,b) such that a*b=k. %C A363981 A038549(n) = min(A005179(2n-1), A005179(2n)). This sequence contains values of k where A005179(2k-1) is smaller. %C A363981 Also values k such that A038549(k) is a perfect square. %C A363981 I do not know if this sequence is infinite or finite, however I have checked integers up to 20000 and continued to find values at a similar density. %e A363981 The smallest number with 5 factor pairs is 36: (1,36), (2,18), (3,12), (4,9), (6,6). 36 has an odd number of divisors, 9. Thus, 5 is a term. %o A363981 (Python) %o A363981 from sympy.utilities.iterables import multiset_partitions %o A363981 from sympy.ntheory import factorint, prime %o A363981 import math %o A363981 def smallestNumWithNDivisors(n): %o A363981 partitionsOfPrimeFactors = multiset_partitions(factorint(n, multiple=True)) %o A363981 candidates = [] %o A363981 for partition in partitionsOfPrimeFactors: %o A363981 factorization = [] %o A363981 for subset in partition: %o A363981 factorization.append(math.prod(subset)) %o A363981 factorization.sort() %o A363981 factorization.reverse() %o A363981 candidate = 1 %o A363981 for j in range(0, len(factorization)): %o A363981 candidate *= prime(j+1)**(factorization[j]-1) %o A363981 candidates.append(candidate) %o A363981 return min(candidates) %o A363981 for k in range(1,200): %o A363981 if smallestNumWithNDivisors(2*k-1)<smallestNumWithNDivisors(2*k): %o A363981 print(k , end=', ') %o A363981 (PARI) f(n) = min(A005179(2*n-1), A005179(2*n)); \\ A038549 %o A363981 isok(k) = issquare(f(k)); \\ _Michel Marcus_, Jul 07 2023 %Y A363981 Cf. A005179, A038548, A038549, A000005. %K A363981 nonn %O A363981 1,2 %A A363981 _Henry Nonnemaker_, Jul 02 2023