This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363992 #15 Aug 02 2023 12:02:18 %S A363992 0,0,1,1,1,0,1,2,1,1,2,2,1,3,3,1,6,3,1,8,4,2,6,6,3,5,7,4,8,8,2,12,7,3, %T A363992 13,6,6,11,9,4,12,12,4,13,13,3,14,14,8,17,11,7,15,15,10,14,13,7,16,18, %U A363992 3,22,18,7,24,14,11,20,20,14,17,18,10,22,22,8 %N A363992 The number of ways 2n can be expressed as the sum of an odd prime number and an odd nonprime, both of which are relatively prime to n. %e A363992 For n=24 (2n=48), we have a(24)=3 since 48=1+47, 48=13+35, and 48=23+25. These are the only sums containing one prime and one nonprime, both of which are relatively prime to n. %p A363992 f:= proc(n) local k; %p A363992 nops(select(k -> igcd(n,k) = 1 and igcd(n,2*n-k) = 1 and isprime(k) and not isprime(2*n-k), [seq(k,k=1..2*n-1,2)])) %p A363992 end proc: %p A363992 map(f, [$0..100]); # _Robert Israel_, Jul 03 2023 %o A363992 (Sage) %o A363992 def d(a): %o A363992 """ %o A363992 This function returns the number of ways n=2a can be expressed as the sum of one prime number and an odd composite that are relatively prime to n %o A363992 """ %o A363992 d=0 %o A363992 for i in range(1,a+1): %o A363992 if ((is_prime(i) and not is_prime(2*a-i) and gcd(i,2*a-i) == 1)) or ((not is_prime(i) and is_prime(2*a-i) and gcd(i,2*a-i) == 1)): %o A363992 d=d+1 %o A363992 return d %Y A363992 Cf. A002375, A141095. %K A363992 nonn %O A363992 0,8 %A A363992 _Brian Darrow, Jr._, Jun 30 2023