cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363998 Primes of the form |2^i - 3^j|, for i >= 0, j >= 0.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 61, 73, 79, 101, 127, 139, 179, 211, 227, 229, 239, 241, 269, 431, 503, 509, 601, 727, 997, 1021, 1163, 1319, 1931, 2039, 2179, 3299, 3853, 4093, 4513, 6529, 6553, 7949, 8111, 8191, 11491, 14197, 16141, 16381
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2023

Keywords

Examples

			As in A014121, numbers of the form |2^i - 3^j|, for i >=0, j>=0 are 0,1,2,3,5,7,8,11,..., in which the primes are 2,3,5,7,11,... .
		

Crossrefs

Programs

  • Mathematica
    z = 500;
    t = Table[Abs[2^i - 3^j], {i, 0, z}, {j, 0, z}];
    v = Union[Sort[Flatten[t]]]; (* A014121*)
    Intersection[v, Prime[Range[200000]]]   (* A363998 *)

A363999 Numbers of the form |2^i - 3^j|, for i >= 1, j >= 1.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 37, 47, 49, 55, 61, 65, 73, 77, 79, 101, 115, 119, 125, 139, 175, 179, 211, 217, 227, 229, 235, 239, 241, 247, 253, 269, 295, 431, 473, 485, 503, 509, 601, 665, 697, 713, 721, 725, 727, 781, 943, 997, 1015, 1021, 1163
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2023

Keywords

Crossrefs

A364001 Primes of the form |2^i - 3^j|, i >= 1, j >= 1.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 29, 37, 47, 61, 73, 79, 101, 139, 179, 211, 227, 229, 239, 241, 269, 431, 503, 509, 601, 727, 997, 1021, 1163, 1319, 1931, 2039, 2179, 3299, 3853, 4093, 4513, 6529, 6553, 7949, 8111, 11491, 14197, 16141, 16381, 19427, 19681, 32687
Offset: 1

Views

Author

Clark Kimberling, Aug 09 2023

Keywords

Crossrefs

Programs

  • Mathematica
    z = 500;
    t = Table[Abs[2^i - 3^j], {i, 1, z}, {j, 1, z}];
    u = Sort[Flatten[t]];
    v = Union[u] ; (* A363999 *)
    w = (v - 1)/2 ;  (* A364000 *)
    Intersection[v, Prime[Range[200000]]]  (* this sequence *)
Showing 1-3 of 3 results.