cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364003 Integers K such that PSL_2(K) is a K_4-simple group, i.e., |PSL_2(K)| has 4 distinct prime divisors.

Original entry on oeis.org

11, 13, 16, 19, 23, 25, 27, 31, 32, 37, 47, 49, 53, 73, 81, 97, 107, 127, 128, 163, 193, 243, 257, 383, 487, 577, 863, 1153, 2187, 2593, 2917, 4373, 8192, 8747, 131072, 524288, 995327, 1492993, 1594323, 1990657, 5308417, 28311553, 86093443, 2147483648, 6879707137
Offset: 1

Views

Author

Lixin Zheng, Jul 01 2023

Keywords

Comments

This sequence is conjectured to be infinite, see Bugeaud, Cao, & Mignotte.

Examples

			|PSL_2(11)| = 660 = 2^2 * 3 * 5 * 11.
		

Crossrefs

Subsequence of A000961.
Cf. A003586.

Programs

  • GAP
    is:=function(n)
    return IsPrimePowerInt(n) and Length(Unique(FactorsInt(n*(n^2-1))))=4;
    end;
    Filtered([2..1000], n -> is(n)); # Charles R Greathouse IV, Jul 03 2023; edited by Lixin Zheng, Jun 23 2024
    
  • PARI
    is(n)=isprimepower(n) && omega(lcm([n-1,n,n+1]))==4 \\ Charles R Greathouse IV, Jul 03 2023
    
  • PARI
    H(n)=isprimepower(n/2^valuation(n,2)/3^valuation(n,3))
    list(lim)=my(v=List(), N); lim\=1; for(n=1, logint(lim\2+1, 3), N=2*3^n; while(N<=lim+1, if(isprimepower(N-1) && H(N-2), listput(v, N-1)); if(isprimepower(N+1) && H(N+2) && N+1<=lim, listput(v, N+1)); N<<=1)); for(n=4,logint(N+1,2), N=2^n; if(H(N-1) && H(N+1) && N<=lim, listput(v,N)); if(isprimepower(N-1) && H(N-2), listput(v,N-1)); if(isprimepower(N+1) && H(N+2) && N+1<=lim, listput(v,N+1))); for(n=3,logint(N,3), N=3^n; if(H(N-1) && H(N+1), listput(v,N))); Set(v) \\ Charles R Greathouse IV, Jul 03 2023

Extensions

a(23) corrected by Charles R Greathouse IV, Jul 03 2023
a(36)-a(45) from Charles R Greathouse IV, Jul 03 2023