cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364006 Wythoff-Niven numbers: numbers that are divisible by the number of 1's in their Wythoff representation.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 12, 15, 18, 20, 21, 24, 26, 28, 32, 35, 39, 40, 42, 45, 47, 51, 52, 54, 55, 56, 60, 68, 72, 76, 80, 84, 86, 88, 90, 91, 98, 100, 102, 105, 117, 120, 123, 125, 135, 136, 138, 141, 143, 144, 156, 164, 168, 172, 174, 176, 178, 180, 188, 192
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

Numbers k such that A135818(k) | k.
Includes all the positive even-indexed Fibonacci numbers (A001906), since the Wythoff representation of Fibonacci(2*n), for n >= 1, is 1 followed by n-1 0's.

Crossrefs

Programs

  • Mathematica
    wnQ[n_] := (s = Total[w[n]]) > 0 && Divisible[n, s] (* using the function w[n] from A364005 *)

A364008 Starts of runs of 3 consecutive integers that are Wythoff-Niven numbers (A364006).

Original entry on oeis.org

6, 54, 374, 375, 978, 979, 14695, 15694, 17708, 17709, 34990, 36476, 38374, 41699, 45304, 75944, 85149, 93104, 113463, 114560, 116170, 117754, 120274, 121371, 203983, 221804, 250118, 259819, 270214, 270477, 275526, 276912, 288125, 297241, 297515, 299824, 309440
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[10, 3] (* generates the first 10 terms using the function seq[count, nConsec] from A364007 *)

A364009 Starts of runs of 4 consecutive integers that are Wythoff-Niven numbers (A364006).

Original entry on oeis.org

374, 978, 17708, 832037, 1631097, 4821894, 5572377, 13376142, 14808759, 14930343, 35406720, 36534357, 38208519, 38748444, 38890509, 39088166, 65375232, 70046899, 79988116, 81224637, 82071105, 82898100, 94109430, 94875417, 95070492, 98014500, 100350522, 101651787, 102190437
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Comments

Are there runs of 5 or more consecutive integers that are Wythoff-Niven numbers?

Crossrefs

Programs

  • Mathematica
    seq[3, 4] (* generates the first 3 terms using the function seq[count, nConsec] from A364007 *)
Showing 1-3 of 3 results.