cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364023 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in descending order and concatenated, form a palindrome in base 10.

This page as a plain text file.
%I A364023 #36 Aug 05 2023 21:42:52
%S A364023 111,414,777,35853,1226221,7673767,7744477,9396939,859767958,
%T A364023 11211911211,12467976421,72709290727,93969696939,1030507050301,
%U A364023 1120237320211,1225559555221,1234469644321,1334459544331,3254595954523,10048622684001,100330272033001,100827848728001
%N A364023 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in descending order and concatenated, form a palindrome in base 10.
%e A364023 111 = 37*3
%e A364023 414 = 23*3*3*2
%e A364023 777 = 37*7*3
%e A364023 35853 = 37*19*17*3
%e A364023 1226221 = 1201*1021
%e A364023 7673767 = 79111*97
%e A364023 7744477 = 3119*191*13
%e A364023 9396939 = 31013*101*3
%e A364023 859767958 = 2731*199*113*7*2
%t A364023 (* generate palindromes with even n *)
%t A364023 poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
%t A364023 DeleteCases[Tuples[Range[0,9],n/2],{0..,___}]
%t A364023 (* generate palindromes with odd n *)
%t A364023 poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
%t A364023 DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,___}],{k,0,9}]]
%t A364023 (* find descending factor sequence *)
%t A364023 descendFACTOR[n_Integer]:=
%t A364023 PalindromeQ[StringJoin[Reverse[ToString/@Flatten[Table[#1,#2]&@@@#]]]]&&
%t A364023 Length[#]>1&@FactorInteger[n]
%t A364023 (* example for palindromes of size 7 *)
%t A364023 Parallelize@Select[poli[7],descendFACTOR]//Sort//AbsoluteTiming
%Y A364023 Similar to A364050. Subsequence of A002113 and A024619.
%K A364023 nonn,base,hard
%O A364023 1,1
%A A364023 _Vitaliy Kaurov_, Jul 04 2023