This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364026 #16 Aug 05 2023 23:52:13 %S A364026 1,1,1,0,1,1,0,1,1,1,0,1,4,1,1,0,1,26,14,1,1,0,1,236,509,49,1,1,0,1, %T A364026 2752,35839,10340,175,1,1,0,1,39208,4154652,5941404,222244,637,1,1,0, %U A364026 1,660032,718142257,7244337796,1081112575,4981531,2353,1,1,0,1,12818912,173201493539 %N A364026 Table read by descending antidiagonals. T(n,k) is the big Ramsey degree of k in w^n, where w is the first transfinite ordinal, omega. %C A364026 T(n,k) is the least integer t such that, for all finite colorings of the k-subsets of w^n, there exists some S, an order-equivalent subset to w^n, where that coloring restricted to the k-subsets of S outputs at most t colors. %C A364026 By Ramsey's theorem, the first row T(1,k)=1 for all k. %C A364026 The second row T(2,k) coincides with A000311. %C A364026 The second column T(n,2) coincides with A079309. %D A364026 Dragan Mašulovic and Branislav Šobot, Countable ordinals and big Ramsey degrees, Combinatorica, 41 (2021), 425-446. %D A364026 Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorčević, Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups, Geometric & Functional Analysis, 15 (2005), 106-189. %H A364026 Joanna Boyland, William Gasarch, Nathan Hurtig, and Robert Rust, <a href="https://arxiv.org/abs/2305.07192">Big Ramsey Degrees of Countable Ordinals</a>, arXiv:2305.07192 [math.CO], 2023. %H A364026 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OrdinalNumber.html">Ordinal Number</a>. %F A364026 T(n,k) = Sum_{p=0..n*k} P(p,n,k), where for n >= 2 and k >= 1, %F A364026 P(0,n,k) = 0, and for p >= 1, %F A364026 P(p,n,k) = Sum_{j=1..k} Sum_{0..p-1} binomial(p-1,i)*P(i,n-1,j)*P(p-1-i,n,k-j). %e A364026 The data is organized in a table beginning with row n = 0 and column k = 0. The data is read by descending antidiagonals. T(2,3)=26. %e A364026 The table T(n,k) begins: %e A364026 [n/k] 0 1 2 3 4 5 ... %e A364026 -------------------------------------------------------------------- %e A364026 [0] 1, 1, 0, 0, 0, 0, ... %e A364026 [1] 1, 1, 1, 1, 1, 1, ... %e A364026 [2] 1, 1, 4, 26, 236, 2572, ... %e A364026 [3] 1, 1, 14, 509, 35839, 4154652, ... %e A364026 [4] 1, 1, 49, 10340, ... %e A364026 [5] 1, 1, 175, 222244, ... %e A364026 [6] 1, 1, 637, ... %o A364026 (Haskell) %o A364026 pp p n k %o A364026 | n == 0 && k >= 2 = 0 %o A364026 | k == 0 && p == 0 = 1 %o A364026 | k == 0 && p >= 1 = 0 %o A364026 | n == 0 && k == 1 && p == 0 = 1 %o A364026 | n == 0 && k == 1 && p >= 1 = 0 %o A364026 | n == 1 && k >= 1 && k == p = 1 %o A364026 | n == 1 && k >= 1 && k /= p = 0 %o A364026 | n >= 2 && k >= 1 = sum [binom (p-1) i * pp i (n-1) j * pp (p-1-i) n (k-j) | i <- [0..p-1], j <- [1..k]] %o A364026 binom n 0 = 1 %o A364026 binom 0 k = 0 %o A364026 binom n k = binom (n-1) (k-1) * n `div` k %o A364026 a364026 n k = %o A364026 sum [pp p n k | p <- [0..n*k]] %Y A364026 T(2,k) is A000311. T(n,2) is A079309. %K A364026 nonn,tabl %O A364026 0,13 %A A364026 _Nathan Hurtig_, Jul 01 2023