cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364041 Expansion of 1/Product_{k>0} (1 - x^(2*k-1))^((2*k-1)^(2*k-1)).

This page as a plain text file.
%I A364041 #33 Jul 09 2023 12:13:34
%S A364041 1,1,1,28,28,3153,3531,827074,911449,388335592,415455628,285728307489,
%T A364041 298762259972,303174312029604,312427539531172,438206538943092800,
%U A364041 447594828079035405,827688010429432132457,840767646450714838158,1979260573433349667269165
%N A364041 Expansion of 1/Product_{k>0} (1 - x^(2*k-1))^((2*k-1)^(2*k-1)).
%F A364041 G.f.: exp( Sum_{k>0} A363991(k) * x^k/k ).
%F A364041 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A363991(k) * a(n-k).
%t A364041 a[0] = 1; a[n_] := a[n] = Sum[DivisorSum[k, #^(# + 1) &, OddQ[#] &]*a[n - k], {k, 1, n}]/n; Array[a, 20, 0] (* _Amiram Eldar_, Jul 09 2023 *)
%o A364041 (PARI) my(N=20, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^(2*k-1))^((2*k-1)^(2*k-1))))
%Y A364041 Cf. A023880, A363991.
%K A364041 nonn
%O A364041 0,4
%A A364041 _Seiichi Manyama_, Jul 09 2023