cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364050 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in ascending order and concatenated, form a palindrome in base 10.

This page as a plain text file.
%I A364050 #42 Aug 05 2023 21:44:06
%S A364050 10001,36763,1037301,1226221,9396939,12467976421,14432823441,
%T A364050 93969696939,119092290911,1030507050301,1120237320211,1225559555221,
%U A364050 1234469644321,1334459544331,100330272033001,101222252222101,103023070320301,121363494363121,134312696213431
%N A364050 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in ascending order and concatenated, form a palindrome in base 10.
%C A364050 Palindromes p in A024619 such that A037276(p) is a palindrome.
%C A364050 Terms are coprime to 10. - _David A. Corneth_, Jul 05 2023
%e A364050   10001 = 73 * 137
%e A364050   36763 = 97 * 379
%e A364050 1037301 = 3 * 29 * 11923
%e A364050 1226221 = 1021 * 1201
%e A364050 9396939 = 3 * 101 * 31013
%t A364050 (* generate palindromes with even n *)
%t A364050 poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@
%t A364050 DeleteCases[Tuples[Range[0,9],n/2],{0..,___}]
%t A364050 (* generate palindromes with odd n *)
%t A364050 poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@
%t A364050 DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,___}],{k,0,9}]]
%t A364050 (* find ascending factor sequence *)
%t A364050 ascendFACTOR[n_Integer]:=
%t A364050 PalindromeQ[StringJoin[ToString/@Flatten[Table[#1,#2]&@@@#]]]&&
%t A364050 Length[#]>1&@FactorInteger[n]
%t A364050 (* example for palindromes of size 7 *)
%t A364050 Parallelize@Select[poli[7],ascendFACTOR]//Sort//AbsoluteTiming
%o A364050 (PARI) nextpal(n, b) = {my(m=n+1, p = 0); while (m > 0, m = m\b; p++; ); if (n+1 == b^p, p++); n = n\(b^(p\2))+1; m = n; n = n\(b^(p%2)); while (n > 0, m = m*b + n%b; n = n\b; ); m; }
%o A364050 ispal(n) = my(d=digits(n)); Vecrev(d) == d;
%o A364050 g(f) = my(s=""); for (i=1, #f~, for (j=1, f[i,2], s = concat(s, Str(f[i,1])))); eval(s);
%o A364050 isok(k) = my(f=factor(k)); if (#f~>=2, ispal(g(f)));
%o A364050 lista(nn) = {my(k=0); while (k <= nn, if (ispal(k) && isok(k), print1(k, ", ")); k = nextpal(k,10););} \\ _Michel Marcus_, Jul 11 2023
%Y A364050 Subsequence of A002113 and A024619. Cf. A037276.
%Y A364050 Similar to A364023.
%K A364050 nonn,base
%O A364050 1,1
%A A364050 _Vitaliy Kaurov_, Jul 03 2023