This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364050 #42 Aug 05 2023 21:44:06 %S A364050 10001,36763,1037301,1226221,9396939,12467976421,14432823441, %T A364050 93969696939,119092290911,1030507050301,1120237320211,1225559555221, %U A364050 1234469644321,1334459544331,100330272033001,101222252222101,103023070320301,121363494363121,134312696213431 %N A364050 Palindromes that have at least two distinct prime factors and whose prime factors, listed (with multiplicity) in ascending order and concatenated, form a palindrome in base 10. %C A364050 Palindromes p in A024619 such that A037276(p) is a palindrome. %C A364050 Terms are coprime to 10. - _David A. Corneth_, Jul 05 2023 %e A364050 10001 = 73 * 137 %e A364050 36763 = 97 * 379 %e A364050 1037301 = 3 * 29 * 11923 %e A364050 1226221 = 1021 * 1201 %e A364050 9396939 = 3 * 101 * 31013 %t A364050 (* generate palindromes with even n *) %t A364050 poli[n_Integer?EvenQ]:=FromDigits[Join[#,Reverse[#]]]&/@ %t A364050 DeleteCases[Tuples[Range[0,9],n/2],{0..,___}] %t A364050 (* generate palindromes with odd n *) %t A364050 poli[n_Integer?OddQ]:=Flatten[Table[FromDigits[Join[#,{k},Reverse[#]]]&/@ %t A364050 DeleteCases[Tuples[Range[0,9],(n-1)/2],{0..,___}],{k,0,9}]] %t A364050 (* find ascending factor sequence *) %t A364050 ascendFACTOR[n_Integer]:= %t A364050 PalindromeQ[StringJoin[ToString/@Flatten[Table[#1,#2]&@@@#]]]&& %t A364050 Length[#]>1&@FactorInteger[n] %t A364050 (* example for palindromes of size 7 *) %t A364050 Parallelize@Select[poli[7],ascendFACTOR]//Sort//AbsoluteTiming %o A364050 (PARI) nextpal(n, b) = {my(m=n+1, p = 0); while (m > 0, m = m\b; p++; ); if (n+1 == b^p, p++); n = n\(b^(p\2))+1; m = n; n = n\(b^(p%2)); while (n > 0, m = m*b + n%b; n = n\b; ); m; } %o A364050 ispal(n) = my(d=digits(n)); Vecrev(d) == d; %o A364050 g(f) = my(s=""); for (i=1, #f~, for (j=1, f[i,2], s = concat(s, Str(f[i,1])))); eval(s); %o A364050 isok(k) = my(f=factor(k)); if (#f~>=2, ispal(g(f))); %o A364050 lista(nn) = {my(k=0); while (k <= nn, if (ispal(k) && isok(k), print1(k, ", ")); k = nextpal(k,10););} \\ _Michel Marcus_, Jul 11 2023 %Y A364050 Subsequence of A002113 and A024619. Cf. A037276. %Y A364050 Similar to A364023. %K A364050 nonn,base %O A364050 1,1 %A A364050 _Vitaliy Kaurov_, Jul 03 2023