cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364056 Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.

This page as a plain text file.
%I A364056 #7 Jul 08 2023 08:04:36
%S A364056 2,4,8,12,16,20,24,28,32,40,44,48,52,56,64,68,72,76,80,88,92,96,104,
%T A364056 112,116,120,124,128,136,144,148,152,160,164,168,172,176,184,188,192,
%U A364056 200,208,212,224,232,236,240,244,248,256,264,268,272,280,284,288,292
%N A364056 Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.
%C A364056 The multiset of prime factors of n is row n of A027746.
%C A364056 The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).
%e A364056 The terms together with their prime indices begin:
%e A364056      2: {1}             64: {1,1,1,1,1,1}      136: {1,1,1,7}
%e A364056      4: {1,1}           68: {1,1,7}            144: {1,1,1,1,2,2}
%e A364056      8: {1,1,1}         72: {1,1,1,2,2}        148: {1,1,12}
%e A364056     12: {1,1,2}         76: {1,1,8}            152: {1,1,1,8}
%e A364056     16: {1,1,1,1}       80: {1,1,1,1,3}        160: {1,1,1,1,1,3}
%e A364056     20: {1,1,3}         88: {1,1,1,5}          164: {1,1,13}
%e A364056     24: {1,1,1,2}       92: {1,1,9}            168: {1,1,1,2,4}
%e A364056     28: {1,1,4}         96: {1,1,1,1,1,2}      172: {1,1,14}
%e A364056     32: {1,1,1,1,1}    104: {1,1,1,6}          176: {1,1,1,1,5}
%e A364056     40: {1,1,1,3}      112: {1,1,1,1,4}        184: {1,1,1,9}
%e A364056     44: {1,1,5}        116: {1,1,10}           188: {1,1,15}
%e A364056     48: {1,1,1,1,2}    120: {1,1,1,2,3}        192: {1,1,1,1,1,1,2}
%e A364056     52: {1,1,6}        124: {1,1,11}           200: {1,1,1,3,3}
%e A364056     56: {1,1,1,4}      128: {1,1,1,1,1,1,1}    208: {1,1,1,1,6}
%t A364056 prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
%t A364056 merr[y_]:=If[Length[y]==0,0,If[OddQ[Length[y]],y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]];
%t A364056 Select[Range[100],merr[prifacs[#]]==2&]
%Y A364056 Partitions of this type are counted by A027336.
%Y A364056 Median of prime indices is A360005(n)/2.
%Y A364056 For mode instead of median we have A360013, low A360015.
%Y A364056 The low version is A363488, positions of 1's in A363941.
%Y A364056 Positions of 1's in A363942.
%Y A364056 A112798 lists prime indices, length A001222, sum A056239.
%Y A364056 A123528/A123529 gives mean of prime factors, indices A326567/A326568.
%Y A364056 A124943 counts partitions by low median, high A124944.
%Y A364056 Cf. A072978, A215366, A316413, A359908, A363727, A363740, A363949.
%K A364056 nonn
%O A364056 1,1
%A A364056 _Gus Wiseman_, Jul 07 2023