This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364056 #7 Jul 08 2023 08:04:36 %S A364056 2,4,8,12,16,20,24,28,32,40,44,48,52,56,64,68,72,76,80,88,92,96,104, %T A364056 112,116,120,124,128,136,144,148,152,160,164,168,172,176,184,188,192, %U A364056 200,208,212,224,232,236,240,244,248,256,264,268,272,280,284,288,292 %N A364056 Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's. %C A364056 The multiset of prime factors of n is row n of A027746. %C A364056 The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length). %e A364056 The terms together with their prime indices begin: %e A364056 2: {1} 64: {1,1,1,1,1,1} 136: {1,1,1,7} %e A364056 4: {1,1} 68: {1,1,7} 144: {1,1,1,1,2,2} %e A364056 8: {1,1,1} 72: {1,1,1,2,2} 148: {1,1,12} %e A364056 12: {1,1,2} 76: {1,1,8} 152: {1,1,1,8} %e A364056 16: {1,1,1,1} 80: {1,1,1,1,3} 160: {1,1,1,1,1,3} %e A364056 20: {1,1,3} 88: {1,1,1,5} 164: {1,1,13} %e A364056 24: {1,1,1,2} 92: {1,1,9} 168: {1,1,1,2,4} %e A364056 28: {1,1,4} 96: {1,1,1,1,1,2} 172: {1,1,14} %e A364056 32: {1,1,1,1,1} 104: {1,1,1,6} 176: {1,1,1,1,5} %e A364056 40: {1,1,1,3} 112: {1,1,1,1,4} 184: {1,1,1,9} %e A364056 44: {1,1,5} 116: {1,1,10} 188: {1,1,15} %e A364056 48: {1,1,1,1,2} 120: {1,1,1,2,3} 192: {1,1,1,1,1,1,2} %e A364056 52: {1,1,6} 124: {1,1,11} 200: {1,1,1,3,3} %e A364056 56: {1,1,1,4} 128: {1,1,1,1,1,1,1} 208: {1,1,1,1,6} %t A364056 prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]]; %t A364056 merr[y_]:=If[Length[y]==0,0,If[OddQ[Length[y]],y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]]; %t A364056 Select[Range[100],merr[prifacs[#]]==2&] %Y A364056 Partitions of this type are counted by A027336. %Y A364056 Median of prime indices is A360005(n)/2. %Y A364056 For mode instead of median we have A360013, low A360015. %Y A364056 The low version is A363488, positions of 1's in A363941. %Y A364056 Positions of 1's in A363942. %Y A364056 A112798 lists prime indices, length A001222, sum A056239. %Y A364056 A123528/A123529 gives mean of prime factors, indices A326567/A326568. %Y A364056 A124943 counts partitions by low median, high A124944. %Y A364056 Cf. A072978, A215366, A316413, A359908, A363727, A363740, A363949. %K A364056 nonn %O A364056 1,1 %A A364056 _Gus Wiseman_, Jul 07 2023