This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364058 #7 Jul 15 2023 05:42:35 %S A364058 3,5,6,7,9,10,11,13,14,15,17,18,19,21,22,23,25,26,27,29,30,31,33,34, %T A364058 35,36,37,38,39,41,42,43,45,46,47,49,50,51,53,54,55,57,58,59,60,61,62, %U A364058 63,65,66,67,69,70,71,73,74,75,77,78,79,81,82,83,84,85,86 %N A364058 Heinz numbers of integer partitions with median > 1. Numbers whose multiset of prime factors has median > 2. %C A364058 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A364058 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %F A364058 A360005(a(n)) > 1. %F A364058 A360459(a(n)) > 2. %e A364058 The terms together with their prime indices begin: %e A364058 3: {2} 23: {9} 42: {1,2,4} %e A364058 5: {3} 25: {3,3} 43: {14} %e A364058 6: {1,2} 26: {1,6} 45: {2,2,3} %e A364058 7: {4} 27: {2,2,2} 46: {1,9} %e A364058 9: {2,2} 29: {10} 47: {15} %e A364058 10: {1,3} 30: {1,2,3} 49: {4,4} %e A364058 11: {5} 31: {11} 50: {1,3,3} %e A364058 13: {6} 33: {2,5} 51: {2,7} %e A364058 14: {1,4} 34: {1,7} 53: {16} %e A364058 15: {2,3} 35: {3,4} 54: {1,2,2,2} %e A364058 17: {7} 36: {1,1,2,2} 55: {3,5} %e A364058 18: {1,2,2} 37: {12} 57: {2,8} %e A364058 19: {8} 38: {1,8} 58: {1,10} %e A364058 21: {2,4} 39: {2,6} 59: {17} %e A364058 22: {1,5} 41: {13} 60: {1,1,2,3} %t A364058 prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]]; %t A364058 Select[Range[100],Median[prifacs[#]]>2&] %Y A364058 For mean instead of median we have A057716, counted by A000065. %Y A364058 These partitions are counted by A238495. %Y A364058 The complement is A364056, counted by A027336, low version A363488. %Y A364058 A000975 counts subsets with integer median, A051293 for mean. %Y A364058 A124943 counts partitions by low median, high version A124944. %Y A364058 A360005 gives twice the median of prime indices, A360459 for prime factors. %Y A364058 A359893 and A359901 count partitions by median. %Y A364058 Cf. A002865, A316413, A325347, A327473, A327476, A363727. %K A364058 nonn %O A364058 1,1 %A A364058 _Gus Wiseman_, Jul 14 2023