This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364059 #12 Jul 08 2023 23:06:19 %S A364059 0,0,1,2,3,5,9,11,18,26,35,49,70,89,123,164,212,278,366,460,597,762, %T A364059 957,1210,1530,1891,2369,2943,3621,4468,5507,6703,8210,10004,12115, %U A364059 14688,17782,21365,25743,30913,36965,44210,52801,62753,74667,88626,104874,124070 %N A364059 Number of integer partitions of n whose rounded mean is > 1. Partitions with mean >= 3/2. %C A364059 We use the "rounding half to even" rule, see link. %H A364059 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rounding">Rounding</a>. %F A364059 a(n) = A000041(n) - A363947(n). %e A364059 The a(0) = 0 through a(8) = 18 partitions: %e A364059 . . (2) (3) (4) (5) (6) (7) (8) %e A364059 (21) (22) (32) (33) (43) (44) %e A364059 (31) (41) (42) (52) (53) %e A364059 (221) (51) (61) (62) %e A364059 (311) (222) (322) (71) %e A364059 (321) (331) (332) %e A364059 (411) (421) (422) %e A364059 (2211) (511) (431) %e A364059 (3111) (2221) (521) %e A364059 (3211) (611) %e A364059 (4111) (2222) %e A364059 (3221) %e A364059 (3311) %e A364059 (4211) %e A364059 (5111) %e A364059 (22211) %e A364059 (32111) %e A364059 (41111) %t A364059 Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]>1&]],{n,0,30}] %Y A364059 Rounding-up gives A000065. %Y A364059 Rounding-down gives A110618, ranks A344291. %Y A364059 For median instead of mean we appear to have A238495. %Y A364059 The complement is counted by A363947, ranks A363948. %Y A364059 A000041 counts integer partitions. %Y A364059 A008284 counts partitions by length, A058398 by mean. %Y A364059 A025065 counts partitions with low mean 1, ranks A363949. %Y A364059 A067538 counts partitions with integer mean, ranks A316413. %Y A364059 A124943 counts partitions by low median, high A124944. %Y A364059 Cf. A002865, A098859, A241131, A327482, A363723, A363724, A363731, A363946. %K A364059 nonn %O A364059 0,4 %A A364059 _Gus Wiseman_, Jul 06 2023